• 제목/요약/키워드: t-butylhydroperoxide(t-BHP)

검색결과 27건 처리시간 0.029초

호도약침액(胡挑藥鍼液)의 항산화(抗酸化) 효과(效果)에 대(對)한 연구(硏究) -I. 호도약침액(胡挑藥鍼液)이 신장세포(腎臟細胞)서 oxidant에 의한 손상(損傷)에 미치는 영향(影響)- (Antioxidant Effect of Juglandis Semen Herb-acupuncture Solution -I. Effect on Oxidant-induced Injury in Kidney Tubular Cells-)

  • 김영해;김갑성
    • 대한한의학회지
    • /
    • 제17권1호
    • /
    • pp.9-20
    • /
    • 1996
  • Oxygen free radicals can generated during metabolic processes in normal cells and by exposure of cells to toxic substances. These radicals have been recogenized to playa critical role in several pathological conditions including carcinogenesis and aging, and they have been implicated in pathogenesis of various diseases such as seizure, Alzheimer's disease, Parkinson's disease, myocardial infarction, respiratory distress syndrome, and rheumatoid arthritis. This study was undertaken to determine if Juglandis semen herb-acupuncture solution (JSHAS) has a protective effect against cell injury caused by oxidants, t-butylhydroperoxide (t-BHP) and $H_{2}O_2$. Cell injury was estimated by measuring lactate dehydrogenase (LDH) release and lipid perexidation was estimated by measurimg malondialdehyde, a product of lipid peroxidation. JSHAS significantly prevented LDH release induced by t-BHP or $H_{2}O_2$ in a dose-dependent manner at concentrations of 0.5-10%. Such protective effect was observed in control tissues untreated with oxidants. JSHAS, at 5% concentration, significantly reduced LDH release even when the concentrations of t-BHP and $H_{2}O_2$ increased to 5 and 200 mM, respectively. JSHAS, at 5% concentration, significantly reduced the lipid peroxidation by t-BHP and $H_{2}O_2$. These results indicate that JSHAS prevents cell injury and lipid peroxidation induced by oxidants in rabbit kidney cells. However, the underlying mechanisms remain to determined.

  • PDF

Role of Phospholipase $A_2$ in Oxidant-induced Alteration in Phosphate Transport in Primary Cultured Rabbit Renal Proximal Tubule Cells

  • Park, Kwon-Moo;Ko, Sun-Hee;Woo, Jae-Suk;Jung, Jin-Sup;Lee, Sang-Ho;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권5호
    • /
    • pp.601-609
    • /
    • 1998
  • The present study was undertaken to examine the role of phospholipase $A_2\;(PLA_2)$ in oxidant-induced inhibition of phosphate transport in primary cultured rabbit renal proximal tubule cells. Uptakes of phosphate and glucose were dose-dependently inhibited by an oxidant t-butylhydroperoxide (tBHP), and the significant inhibition appeared at 0.025 mM of tBHP, whereas tBHP-induced alterations in lipid peroxidation and cell viability were seen at 0.5 mM. tBHP stimulated arachidonic acid (AA) release in a dose-dependent fashion. A $PLA_2$ inhibitor mepacrine prevented tBHP-induced AA release, but it did not alter the inhibition of phosphate uptake and the decrease in cell viability induced by tBHP. tBHP-induced inhibition of phosphate transport was not affected by a PKC inhibitor, staurosporine. tBHP at 0.1 mM did not produce the inhibition of $Na^+-K^+-ATPase$ activity in microsomal fraction, although it significantly inhibited at 1.0 mM. These results suggest that tBHP can inhibit phosphate uptake through a mechanism independent of $PLA_2$ activation, irreversible cell injury, and lipid peroxidation in primary cultured rabbit renal proximal tubular cells.

  • PDF

Protective Effect of Polysaccharide Fractions from Radix A. Sinensis against tert-Butylhydroperoxide Induced Oxidative Injury in Murine Peritoneal Macrophages

  • Yang, Xingbin;Zhao, Yan;Lv, You;Yang, Ying;Ruan, Yun
    • BMB Reports
    • /
    • 제40권6호
    • /
    • pp.928-935
    • /
    • 2007
  • Three Angelica sinensis polysaccharide fractions (APFs), named APF1, APF2 and APF3, were isolated and purified from Radix A. sinensis and their antioxidant activities were evaluated in isolated mouse peritoneal macrophages by pretreatment with APFs before exposure to 0.2 mM tertbutylhydroperoxide (t-BHP). The results showed that pretreatment of the macrophages with APFs as low as $10{\mu}g$/ml could significantly enhance t-BHP-decreased cell survival, intracellular glutathione (GSH) content and superoxide dismutase (SOD) activity, and also inhibited t-BHP-increased lactate dehydrogenase (LDH) leakage and malondialdehyde (MDA) formation (p < 0.05), and APF3 was the most active fraction, followed by APF2 and APF1 in decreasing order. Furthermore, we found for the first time that the bound-protein in APF3 was associated closely with the protective effects and the polysaccharide inhibited the excess NO release from t-BHP-activated macrophages to protect host cells.

Beneficial Effect of Pentoxifylline on Hypoxia-Induced Cell Injury in Renal Proximal Tubular Cells

  • Jung Soon-Hee
    • 대한의생명과학회지
    • /
    • 제10권4호
    • /
    • pp.341-346
    • /
    • 2004
  • Tumor necrosis factor-α (TNF-α) or its mRNA expression are increased in acute nephrosis of various types including ischemia/reperfusion injury. This study was undertaken to determine whether pentoxifylline (PTX), an inhibitor of TNF-α production, provides a protective effect against hypoxia-induced cell injury in rabbit renal cortical slices. To induce hypoxia-induced cell injury, renal cortical slices were exposed to 100% N₂ atmosphere. Control slices were exposed to 100% O₂ atmosphere. The cell injury was estimated by measuring lactate dehydrogenase (LDH) release and p-aminohippurate (PAH) uptake. Exposure of slices to hypoxia increased the LDH release in a time-dependent manner. However, when slices were exposed to hypoxia in the presence of PTX, the LDH release was decreased. The protective effect of PTX was dose-dependent over the concentrations of 0.05∼1 mM. Hypoxia did not increase lipid peroxidation, whereas an organic hydroperoxide t-butylhydroperoxide (tBHP) resulted in a significant increase in lipid peroxidation. PTX did not affect tBHP-induced lipid peroxidation. Hypoxia decreased PAH uptake, which was significantly attenuated by PTX and glycine. tBHP-induced inhibition of PAH uptake was not altered by PTX, although it was prevented by antioxidant deferoxarnine. The PAH uptake by slices in rabbits with ischemic acute renal failure was prevented by PTX pretreatment. These results suggest that PTX may exert a protective effect against hypoxia-induced cell injury and its effect may due to inhibition of the TNF-α production, but not by its antioxidant action.

  • PDF

신장조직(腎臟組織)에서 백강잠 추출물(抽出物)의 항산화(抗酸化) 작용(作用)에 관(關)한 연구(硏究) (Antioxidant action of Bombycis corpus extraction in renal tissues)

  • 이무형;윤철호;정지천
    • 동국한의학연구소논문집
    • /
    • 제7권1호
    • /
    • pp.87-98
    • /
    • 1998
  • 백강잠 추출물이 신장조직에서 반응성 산소기들에 의한 지질의 과산화와 세포 손상을 방지하는지를 관찰하기 위하여 정상조직과 t-BHP를 처리한 조직에서 백강잠 추출물의 효과를 조사하였다. 지질의 과산화와 LDH 유출은 t-BHP의 농도에 비례하여 증가되었으나, 백강잠 추출물의 첨가로 유의하게 억제되었다. 그리고, t-BHP에 의한 지질의 과산화 및 LDH 유출은 백강잠 추출물의 농도에 비례하여 억제되었다. 또한, 백강잠 추출물은 oxidant를 처리하지 않은 정상조직에서도 지질의 과산화 및 LDH 유출을 유의성 있게 감소시켰다. 그리고, catalase 활성에는 영향이 없는 반면, 정상 조직과 t-BHP를 처리한 조직에서는 glutathione peroxidase 활성을 유의성 있게 증가시켰다. 한편, 반응성 산소기의 발생은 백강잠 추출물의 농도에 비례하여 억제되었다. 이러한 결과로 볼 때, 백강잠 추출물은 신장 조직내 항산화 효소의 활성을 증가시킴과 동시에 직접 반응성 산소기의 발생을 억제하므로 신장 조직에서 지질의 과산화와 세포손상을 방지하는 효과가 있을 것으로 여겨진다.

  • PDF

계혈등 물추출물의 항산화 및 간보호효과 (Antioxidant Effect and Liver Protection Effect of Spatholobi Caulis Water Extract)

  • 이재준;최홍식;김승모
    • 대한본초학회지
    • /
    • 제26권3호
    • /
    • pp.47-56
    • /
    • 2011
  • Objectives : This study investigated whether the water extract of Spatholobi Caulis (SCE) has the ability to protect hepatocyte against oxidative stress induced by tert-butylhydroperoxide (tBHP) in vitro and $CCl_4$ in vivo. Methods : In vitro, HepG2 cells pre-treated with Spatholobi Caulis water extract (1, 3, 10, $30{\mu}g$/ml) for 12h and further incubated with tBHP ($100{\mu}M$) for the next 12h. Cell viability was assessed by MTT assay. In vivo, rats were orally administrated with the aqueous extract of Spatholobi Caulis (SCE; 50, 100 mg/kg) for 4 days and then, injected with $CCl_4$ 1 mg/kg body weight to induce acute liver damage. Results : Treatment with SCE inhibited cell death induced by tBHP, as evidenced by alterations in the levels of the proteins associated with apoptosis:SCE prevented a decrease in $Bcl_2$, and cleavage of poly(ADP-ribose)polymerase and pro-caspase-3. Moreover, SCE inhibited the ability of tBHP to generate $H_2O_2$ production, thereby restoring GSH content. Moreover, SCE treatments in rats effectively decreased liver injuries induced by a single dose of $CCl_4$, as evidenced by decreases in hepatic degeneration and inflammation as well as plasma alanine aminotransferase and lactate dehydrogenase activities. Consistently, treatments of SCE also protected liver in rats stimulated by $CCl_4$, as indicated by restoration GSH and prevention of MDA in the liver. Conclusions : SCE has the ability 1) to protect hepatocyte against oxidative stress induced by tBHP and 2) to prevent $CCl_4$-inducible acute liver toxicity. Present findings may be informative not only in elucidating the pharmacological mechanism of Spatholobi Caulis, but in determining its potential application for oxidative cellular damage in the liver.

국내산 참다래 추출물의 신경독성 방어효과 (Neuroprotective Effects of Korean Kiwifruit against t-BHP-induced Cell Damage in PC12 Cells)

  • 김정희;양희경;홍현주;강원영;김동건;김성철;송관정;;한창훈;이영재
    • 한국자원식물학회지
    • /
    • 제23권2호
    • /
    • pp.165-171
    • /
    • 2010
  • 산화적 스트레스로부터 참다래 과실 추출물의 신경세포 보호효과에 미치는 영향을 알아보기 위하여 신경세포주인 PC12 세포를 이용하여 참다래 과실추출물의 전처리가 산화적 손상으로부터 유발되는 신경세포사멸을 억제할 수 있는지 조사하였다. t-BHP에 의해 유도된 신경세포손상으로부터 세포사멸을 억제하여 세포생존도를 증가시켰으며 세포사멸로부터 형성되는 핵의 농축현상과 단편화가 현저히 감소함을 확인 할 수 있었다. 그리고 Bcl-2 단백의 발현 증가, Bax 단백의 발현 감소, caspase-3의 활성, PARP 분해 단백(85KDa)감소, ERK, p38 활성을 감소시켰다. 따라서 참다래 과실의 추출물은 신경세포증식효과를 통해 신경세포손상으로부터 유발되는 다양한 퇴행성 뇌질환의 예방에 도움이 될 것으로 나타났다.

폐(肺) 조직(組織)에서 산화성(酸化性) 세포(細胞) 손상(損傷)에 대(對)한 호도(胡桃) 추출액(抽出液)의 효과(效果) (Effects of Juglandis Semen extraction on oxidant-induced cell injury in lung tissues)

  • 이우헌;서운교;정지천
    • 대한한의학회지
    • /
    • 제18권1호
    • /
    • pp.375-384
    • /
    • 1997
  • This study was undertaken to determine Juglandis Semen extraction (JS) has a protective effect against the cell injury caused by oxidants, t-butylhydroperoxide (t-BHP) and $H_{2}O_2$ in rabbit lung slices. Cell injury was estimated by measuring tissue water content and peroxidation of membrane lipids was assessed by measuring malondialdehyde (MDA), an end-product of lipid peroxidation. t-BHP significantly increased water content in lung tissues over concentrations of 2-10 mM, and such effects were prevented by 5% JS. JS exerted the beneficial effect in a dose-dependent manner. $H_{2}O_2$ (100 mM) also increased water content in tissues, which was almost completely prevented by 5% JS. t-BHP induced lipid peroxidation in a dose-dependent fashion in lung tissues over concentrations of 0.5-10 mM. JS significantly reduced t-BHP induced lipid peroxidation and oxidant-independent endogenous lipid peroxidation, and such effects were dose-dependent at concentration of 0.5-10%. JS prevented $H_{2}O_2$ (100 mM)-dependent lipid peroxidation. These results suggest that JS prevents ceil injury induced by oxidants in the lung, and such effects may be attributed to inhibition of lipid peroxidation. The precise mechanisms remains to be explored.

  • PDF

오자환(五子丸)의 Peroxynitrite 제거 작용 (Peroxynitrite Scavenging Mechanism of Ojawhan)

  • 김형준;정지천
    • 대한한방내과학회지
    • /
    • 제26권1호
    • /
    • pp.107-118
    • /
    • 2005
  • Objectives : Peroxynitrite $(ONOO^-)$, fonned from the reaction of $O_2^-$ and NO, is a cytotoxic species that can oxidize several cellular components such as proteins, lipids and DNA. It has been implicated in the aging process and age-related disease such as Alzheimer's disease, rheumatoid arthritis, cancer and atherosclerosis. Due to the lack of endogenous enzymes to thwart $ONOO^-$ activation, developing a specific $ONOO^-$ scavenger is remarkably important. The aim of this study was to investigate scavenging activities of $ONOO^-$ and its precursors, NO and $O_2^-$ and its scavenging mechanism of Ojawhan. Methods : To investigate scavenging activities of $ONOO^-$, NO, $O_2^-$ and its scavenging mechanism using fluorescent probes, DCFDA, DAF-2 and DHR 123. The $ONOO^-$ scavenging activity on Ojawhan was assayed by measuring oxidized dihydrorhodamine 123 (DHR 123) by fluorometry. Oxidative stress was induced by strong oxidants t-butyl hydroperoxide (t-BHP). Endothelial cell (YPEN-1) was used for detection of intracellular oxidative stress. Results : Ojawhan markedly scavenged authentic $ONOO^-$, $O_2^-$ and NO. It also inhibited $ONOO^-$ induced by $O_2^-$ and NO which are derived from SIN-1. Furthennore, ${\underline{Ojawhan}}$ blocked lipopolysaccharide (LPS)-induced $ONOO^-$, $O_2^-$ and NO generation utilizing kidney homogenates of LPS-injected mouse and inhibited t-BHP-induced ROS and $ONOO^-$ in endothelial cell culture system. Conclusions : These results suggest that Ojawhan be developed as an effective $ONOO^-$ scavenger for the prevention of $ONOO^-$ involved diseases and age-related diseases.

  • PDF

Lipopolysaccharide로 산화 스트레스를 유도한 Mouse에서 사보환(四補丸)의 Peroxynitrite 억제 효과 (Peroxynitrite Scavenging Activity of Sabohwanin Lipopolysaccharide-Induced Oxidatively-Stressed Mice)

  • 권율;정지천
    • 대한한방내과학회지
    • /
    • 제28권1호
    • /
    • pp.80-91
    • /
    • 2007
  • Objectives : Peroxynitrite (ONOO-), superoxide anion radical (?O2-) and nitric oxide (NO) are cytotoxic because they can oxidize several cellular components such as proteins, lipids and DNA. They have been implicated in the aging process, and age-related diseases such as Alzheimer's disease, rheumatoid arthritis, cancer and atherosclerosis. The aim of this study was to investigate Sabohwan's activity for scavenging ONOO- and its precursors. NO and ?02-. Methods : For this study, the fluorescent probes, namely 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), 4.5-diaminofluorescein (DAF-2) and dihydrorhodamine 123 (DHR 123) were used. Results : Sabohwanblocked tert-butylhydroperoxide (t-BHP)-induced cell death in a dose-dependent fashion. It scavenged t-BHP-induced ONOO-, NO and ?O2- in YPEN cells. Sabohwan inhibited the generation of ONOO-, NO and ?O2- in the lipopolysaccharide (LPS)-treated mouse kidney postmitochondria both in vitro and in vivo. The lipid peroxide level increased and glutathione level decreased in the LPS-treated mice, whereas the ones in the Sabohwanadministered group among the LPS-treated mice reversed toward their natural levels. Conclusions : These results suggest that Sabohwanis an effective ONOO-, ?O2- and NO scavenger, and thereby it might have a potential role as a therapy against the aging process and age-related diseases.

  • PDF