• Title/Summary/Keyword: t$\frac{1}{2}$

Search Result 344, Processing Time 0.025 seconds

ON THE OSCILLATION OF CERTAIN FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Agarwal, Ravi-P.;Grace, S.R.;Dontha, S.
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.307-319
    • /
    • 2004
  • In this paper, we establish some new oscillation criteria for the functional differential equations of the form $\frac{d}{dt}$$\frac{1}{a_{n-1}(t)}$$\frac{d}{dt}(\frac{1}{{a_{n-2}(t)}\frac{d}{dt}(...(\frac{1}{a_1(t)}\frac{d}{dt}x(t))...)))^\alpha$ + $\delta[f_1(t,s[g_1(t)],\frac{d}{dt}x[h_1(t)])$ + $f_2(t,x[g_2(t)],\frac{d}{dt}x[h_2(t)])]=0$ via comparing it with some other functional differential equations whose oscillatory behavior is known.

ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY BANACH SPACES

  • LEE, SUNG JIN;SEO, JEONG PIL
    • The Pure and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.163-179
    • /
    • 2016
  • Let $M_1f(x,y):=\frac{3}{4}f(x+y)-\frac{1}{4}f(-x-y)+\frac{1}{4}(x-y)+\frac{1}{4}f(y-x)-f(x)-f(y)$, $M_2f(x,y):=2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})-f(x)-f(y)$ Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequalities (0.1) $N(M_1f(x,y)-{\rho}M_2f(x,y),t){\geq}\frac{t}{t+{\varphi}(x,y)}$ and (0.2) $N(M_2f(x,y)-{\rho}M_1f(x,y),t){\geq}\frac{t}{t+{\varphi}(x,y)}$ in fuzzy Banach spaces, where ρ is a fixed real number with ρ ≠ 1.

Analysis on Probable Rainfall Intensity in Kyungpook Province (경북지방(慶北地方)의 확률(確率) 강우강도(降雨强度)에 대(對)한 분석(分析))

  • Suh, Seung Duk;Park, Seung Young
    • Current Research on Agriculture and Life Sciences
    • /
    • v.4
    • /
    • pp.77-86
    • /
    • 1986
  • The purpose of this study is to estimate an optimum formula of rainfall intensity on basis of the characteristics for short period of rainfall duration in Kyungpook province for the design of urban sewerage and small basin drain system. Results studied are as follows; 1. The optimum method for Taegu and Pohang, Iwai's and Gumbel-Chow's method are recommended respectively. 2. The opotimum type of rainfall intensity for these area, $I=\frac{a}{\sqrt{t}+b}$ (Japanese type), is confirmed with 2.52~4.17 and 1.86~4.54 as a standard deviation for Taegu and Pohang respectively. The optimum formula of rainfall intensity are as follows. Taegu : T : 200 year - $I=\frac{824}{\sqrt{t}+1.5414}$ T : 100 year - $I=\frac{751}{\sqrt{t}+1.4902}$ T : 50 year - $I=\frac{678}{\sqrt{t}+1.4437}$ T : 30 year - $I=\frac{623}{\sqrt{t}+1.4017}$ T : 20 year - $I=\frac{580}{\sqrt{t}+1.3721}$ T : 10 year - $I=\frac{502}{\sqrt{t}+1.3145}$ T : 5 year - $I=\frac{418}{\sqrt{t}+1.2515}$ Pohang : T : 200 year - $I=\frac{468}{\sqrt{t}+1.1468}$ T : 100 year - $I=\frac{429}{\sqrt{t}+1.1605}$ T : 50 year - $I=\frac{391}{\sqrt{t}+1.1852}$ T : 30 year - $I=\frac{362}{\sqrt{t}+1.2033}$ T : 20 year - $I=\frac{339}{\sqrt{t}+1.2229}$ T : 10 year - $I=\frac{299}{\sqrt{t}+1.2578}$ T : 5 year - $I=\frac{257}{\sqrt{t}+1.3026}$ 3. Significant I.D.F. curves derived should be applied to estimate a suitable rainfall intensity and rainfall duration.

  • PDF

THE STUDY OF THE SYSTEM OF NONLINEAR WAVE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.261-267
    • /
    • 2007
  • We show the existence of the positive solution for the system of the following nonlinear wave equations with Dirichlet boundary conditions $$u_{tt}-u_{xx}+av^+=s{\phi}_{00}+f$$, $$v_{tt}-v_{xx}+bu^+=t{\phi}_{00}+g$$, $$u({\pm}\frac{\pi}{2},t)=v({\pm}\frac{\pi}{2},t)=0$$, where $u_+=max\{u,0\}$, s, $t{\in}R$, ${\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}=1$ of the eigenvalue problem $u_{tt}-u_{xx}={\lambda}_{mn}u$ with $u({\pm}\frac{\pi}{2},t)=0$, $u(x,t+{\pi})=u(x,t)=u(-x,t)=u(x,-t)$ and f, g are ${\pi}$-periodic, even in x and t and bounded functions in $[-\frac{\pi}{2},\frac{\pi}{2}]{\times}[-\frac{\pi}{2},\frac{\pi}{2}]$ with $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}f{\phi}_{00}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}g{\phi}_{00}=0$.

  • PDF

ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES

  • YUN, SUNGSIK;LEE, JUNG RYE;SHIN, DONG YUN
    • The Pure and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.247-263
    • /
    • 2016
  • Let $M_{1}f(x,y):=\frac{3}{4}f(x+y)-\frac{1}{4}f(-x-y)+\frac{1}{4}f(x-y)+\frac{1}{4}f(y-x)-f(x)-f(y)$, $M_{2}f(x,y):=2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})-f(x)-f(y)$. Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequalities (0.1) $N(M_{1}f(x,y),t){\geq}N({\rho}M_{2}f(x,y),t)$ where ρ is a fixed real number with |ρ| < 1, and (0.2) $N(M_{2}f(x,y),t){\geq}N({\rho}M_{1}f(x,y),t)$ where ρ is a fixed real number with |ρ| < $\frac{1}{2}$.

UNIQUE POSITIVE SOLUTION FOR A CLASS OF THE SYSTEM OF THE NONLINEAR SUSPENSION BRIDGE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.355-362
    • /
    • 2008
  • We prove the existence of a unique positive solution for a class of systems of the following nonlinear suspension bridge equation with Dirichlet boundary conditions and periodic conditions $$\{{u_{tt}+u_{xxxx}+\frac{1}{4}u_{ttxx}+av^+={\phi}_{00}+{\epsilon}_1h_1(x,t)\;\;in\;(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,\\{v_{tt}+v_{xxxx}+\frac{1}{4}u_{ttxx}+bu^+={\phi}_{00}+{\epsilon}_2h_2(x,t)\;\;in\;(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,$$ where $u^+={\max}\{u,0\},\;{\epsilon}_1,\;{\epsilon}_2$ are small number and $h_1(x,t)$, $h_2(x,t)$ are bounded, ${\pi}$-periodic in t and even in x and t and ${\parallel} h_1{\parallel}={\parallel} h_2{\parallel}=1$. We first show that the system has a positive solution, and then prove the uniqueness by the contraction mapping principle on a Banach space

  • PDF

Study on the Measurement of $^{51}Cr-tagged$ Red Cell Survival - Reevaluation of its method & the effect of Blood loss on red cell suruival with $^{51}Cr$ - (방사성동위원소(放射性同位元素) $^{51}Cr$을 이용(利用)한 적혈구수명(赤血球壽命) 측정(測定)에 관(關)한 고찰(考察) -$^{51}Cr$-적혈구수명(赤血球壽命) 측정법(測定法)의 재평가(再評價)와 실혈(失血)이 수명측정(壽命測定)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Choi, Hak-Yong;Koh, Chang-Soon;Lee, Moon-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.4 no.2
    • /
    • pp.55-66
    • /
    • 1970
  • Reappraisal measurements of apparent half survival time of red cell by $^{51}Cr$ method was made and effects of blood-letting over red cell survival were observed. The study was performed on 53 normal male subjects under three different experimental conditions. 1. Group 1 Mean $^{51}Cr$ red cell half survival by ACD wash method was 29.7 days. $T\frac{1}{2}$ of Ascorbic acid method was 29.0 days in group with 100 mg dose and 29.1 days in group with 50 mg dose respectively. There was no difference between these two methods in regards to red cell half survival. No difference were noted in amount of ascorbic acid administered. 2. Group 2 As daily amount of blood loss is increased the shortening of red cell half survival was noted. Rapid phase was seen when blood loss ranged 10 to 25 ml per day, while slow phase noted when more loss amounted 25 ml or more daily. Thus, it was clear that there was more than an exponential relation between $T\frac{1}{2}$ and the amount of blood loss. 3. Group 3 $T\frac{1}{2}$ measured by cpm per whole blood was within normal range and $T\frac{1}{2}$ measured by cpm per red cell mass showed shortening tendency when compared with the former in the group measured after blood loss (from 25 ml daily up to 100 ml daily in 10 days). In the group with rather constant blood loss of 100 ml daily for 10 consecutive days revealed the significant difference in two measurements (P<0.01). 4. $T\frac{1}{2}$ in non-steady state When red cell production is increased compared with red cell destruction, $T\frac{1}{2}$ measured by cpm per red cell mass being shorter than that by cpm per whole blood. Shortening of $T\frac{1}{2}$ measured by cpm per whole blood is more prominent. if red cell destrction is enhanced and exceeds production. 5. It is clear that when expressing red cell destruction rate, $T\frac{1}{2}$ measured by cpm per whole blood is more adequate and production more consistent with cpm red cell mass. 6. $T\frac{1}{2}$ measured during blood-letting, when corrected by amount of blood loss, it remains normal. It is erroneous to use conventional equational when measuring $T\frac{1}{2}$ in non-steady. $T\frac{1}{2}$ measured by cpm per whole blood is considred more applicable in clinical evaluation.

  • PDF

NEW PRIMAL-DUAL INTERIOR POINT METHODS FOR P*(κ) LINEAR COMPLEMENTARITY PROBLEMS

  • Cho, Gyeong-Mi;Kim, Min-Kyung
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.655-669
    • /
    • 2010
  • In this paper we propose new primal-dual interior point methods (IPMs) for $P_*(\kappa)$ linear complementarity problems (LCPs) and analyze the iteration complexity of the algorithm. New search directions and proximity measures are defined based on a class of kernel functions, $\psi(t)=\frac{t^2-1}{2}-{\int}^t_1e{^{q(\frac{1}{\xi}-1)}d{\xi}$, $q\;{\geq}\;1$. If a strictly feasible starting point is available and the parameter $q\;=\;\log\;\(1+a{\sqrt{\frac{2{\tau}+2{\sqrt{2n{\tau}}+{\theta}n}}{1-{\theta}}\)$, where $a\;=\;1\;+\;\frac{1}{\sqrt{1+2{\kappa}}}$, then new large-update primal-dual interior point algorithms have $O((1\;+\;2{\kappa})\sqrt{n}log\;n\;log\;{\frac{n}{\varepsilon}})$ iteration complexity which is the best known result for this method. For small-update methods, we have $O((1\;+\;2{\kappa})q{\sqrt{qn}}log\;{\frac{n}{\varepsilon}})$ iteration complexity.

ON A CLASS OF MULTIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

  • Shukla, S.L.;Chaudhary, A.M.;Owa, S.
    • Kyungpook Mathematical Journal
    • /
    • v.28 no.2
    • /
    • pp.129-139
    • /
    • 1988
  • Let $T^{\alpha}_{\lambda}$(p, A, B) denote the class of functions $$f(z)=z^p-{\sum\limits^{\infty}_{k=1}}{\mid}a_{p+k}{\mid}z^{p+k}$$ which are regular and p valent in the unit disc U = {z: |z| <1} and satisfying the condition $\left|{\frac{{e^{ia}}\{{\frac{f^{\prime}(z)}{z^{p-1}}-p}\}}{(A-B){\lambda}p{\cos}{\alpha}-Be^{i{\alpha}}\{\frac{f^{\prime}(z)}{z^{p-1}}-p\}}}\right|$<1, $z{\in}U$, where 0<${\lambda}{\leq}1$, $-\frac{\pi}{2}$<${\alpha}$<$\frac{\pi}{2}$, $-1{\leq}A$<$B{\leq}1$, 0<$B{\leq}1$ and $p{\in}N=\{1,2,3,{\cdots}\}$. In this paper, we obtain sharp results concerning coefficient estimates, distortion theorem and radius of convexity for the class $T^{\alpha}_{\lambda}$(p, A, B). It is further shown that the class $T^{\alpha}_{\lambda}$(p, A, B) is closed under "arithmetic mean" and "convex linear combinations". We also obtain class preserving integral operators of the form $F(z)=\frac{p+c}{z^c}{\int^z_0t^{c-1}}f(t)dt$, c>-p, for the class $T^{\alpha}_{\lambda}$(p, A, B). Conversely when $F(z){\in}T^{\alpha}_{\lambda}$(p, A, B), radius of p valence of f(z) has also determined.

  • PDF

A Study on the Daily Probability of Rainfall in the Taegu Area according to the Theory of Probaility (대구지방(大邱地方)의 확률일우량(確率日雨量)에 관(關)한 연구(硏究))

  • Kim, Young Ki;Na, In Yup
    • Economic and Environmental Geology
    • /
    • v.4 no.4
    • /
    • pp.225-234
    • /
    • 1971
  • With the advance of civilization and steadily increasing population rivalry and competition for the use of the sewage, culverts, farm irrigation and control of various types of flood discharge have developed and will be come more and more keen in the future. The author has tried to calculated a formula that could adjust these conflicts and bring about proper solutions for many problems arising in connection with these conditions. The purpose of this study is to find out effective sewage, culvert, drainage, farm irrigation, flood discharge and other engineering needs in the Taegu area. If demands expand further a new formula will have to be calculated. For the above the author estimated methods of control for the probable expected rainfall using a formula based on data collected over a long period of time. The formula is determined on the basis of the maximum daily rainfall data from 1921 to 1971 in the Taegu area. 1. Iwai methods shows a highly significant correlation among the variations of Hazen, Thomas, Gumbel methods and logarithmic normal distribution. 2. This study obtained the following major formula: ${\log}(x-2.6)=0.241{\xi}+1.92049{\cdots}{\cdots}$(I.M) by using the relation $F(x)=\frac{1}{\sqrt{\pi}}{\int}_{-{\infty}}^{\xi}e^{-{\xi}^2}d{\xi}$. ${\xi}=a{\log}_{10}\(\frac{x+b}{x_0+b}\)$ ($-b<x<{\infty}$) ${\log}(x_0+b)=2.0448$ $\frac{1}{a}=\sqrt{\frac{2N}{N-1}}S_x=0.1954$. $b=\frac{1}{m}\sum\limits_{i=1}^{m}b_s=-2.6$ $S_x=\sqrt{\frac{1}{N}\sum\limits^N_{i=1}\{{\log}(x_i+b)\}^2-\{{\log}(x_0+b)\}^2}=0.169$ This formule may be advantageously applicable to the estimation of flood discharge, sewage, culverts and drainage in the Taegu area. Notation for general terms has been denoted by the following. Other notations for general terms was used as needed. $W_{(x)}$ : probability of occurranec, $W_{(x)}=\int_{x}^{\infty}f_{(n)}dx$ $S_{(x)}$ : probability of noneoccurrance. $S_{(x)}=\int_{-\infty}^{x}f_(x)dx=1-W_{(x)}$ T : Return period $T=\frac{1}{nW_{(x)}}$ or $T=\frac{1}{nS_{(x)}}$ $W_n$ : Hazen plot $W_n=\frac{2n-1}{2N}$ $F_n=1-W_x=1-\(\frac{2n-1}{2N}\)$ n : Number of observation (annual maximum series) P : Probability $P=\frac{N!}{{t!}(N-t)}F{_i}^{N-t}(1-F_i)^t$ $F_n$ : Thomas plot $F_n=\(1-\frac{n}{N+1}\)$ N : Total number of sample size $X_l$ : $X_s$ : maximum, minumum value of total number of sample size.

  • PDF