• Title/Summary/Keyword: systems beyond 3G

Search Result 40, Processing Time 0.036 seconds

An Advanced MCL Method for a Sharing Analysis of Mobile Communication Systems beyond 3G (차세대 이동통신 시스템의 주파수 공유분석을 위한 개선된 MCL 방법)

  • Chung Woo-Ghee;Yoon Hyun-Goo;Jo Han-Shin;Lim Jae-Woo;Yook Jong-Gwan;Park Han-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.307-316
    • /
    • 2006
  • In this paper the analytical method, namely advanced minimum coupling loss(A-MCL), was proposed in order to analyze the coexistence of OFDM-based systems beyond 3G(B3G) with point-to point(PP) fixed service(FS) microwave systems. Our proposed method is based on a power spectral density(PSD) analysis. So it can be easily applicable to analyze the coexistence of OFDM-based systems B3G using flexible spectrum usage(FSU) with other systems, where the conventional MCL method cannot allocate transmit power partially to some subcarriers which overlap the band of a victim system. By applying the conventional MCL method and the A-MCL method, interfering power levels at the receiver of a interfered system are respectively calculated. A-MCL can calculate interference power more accurately than MCL by the maximum value of 4.5 dB. Therefore it can be concluded that our prosed method, namely A-MCL, is applicable to a sharing analysis of OFDM-based systems B3G.

A Evolution Path to the B3G Communication Systems (B3G통신 시스템을 향한 단계적 진화)

  • 이승희;김종권
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.490-492
    • /
    • 2004
  • 최근 통신 시스템의 트래픽 추세가 음성 위주에서 패킷 서비스 중심의 광대역 멀티미디어 서비스로 점차 변모하고 있는데 이러한 경향이 B3G(Beyond 3G) 통신 시스템의 네트워크 구조에 미치는 영향과 향후 전망을 네트워크의 진화, 네트워크간 연동, 네트워크의 통합화 및 수직적 계층화 관점에서 단계적인 핵심 망의 진화 방안을 기술하고자 한다.

  • PDF

Frequency Sharing of Cellular TDD-OFDMA Systems beyond 3G with Terrestrial Fixed Systems (TDD-OFDMA 기반의 차세대 셀룰라 시스템과 육상 고정 시스템 간의 주파수 공유 분석)

  • Jo, Han-Shin;Yoon, Hyun-Goo;Yook, Jong-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.125-133
    • /
    • 2007
  • In this paper, the frequency sharing issue between cellular time division duplex-orthogonal frequency division multiple access (TDD-OFDMA) Systems and terrestrial Fixed Systems has been studied. The conventional advanced minimum coupling loss (A-MCL) includes only the formulation to calculate the interference from one interfering system. Therefore, A-MCL must be modified to assess the aggregated interference from base stations(BS) and mobile stations(MS). By applying the modified model, the coexistence analysis are done according to the average number of MS per sector, BS-to-BS distance, and the main beam direction of the terrestrial fixed system. In the case of 20 MS per sector, the BS-to-BS distance and the minimum distance between a terrestrial fixed system and BS are 5.8 km and 2.5 km, respectively. It is about 25dB that the difference between maximum and minimum interference signal power which varies with the main beam direction of the terrestrial fixed system. Moreover, for 40% of the main beam direction of the terrestrial fixed system, interference signal power is less than the maximum permissible interference.

A Novel Cross-Layer Dynamic Integrated Priority-Computing Scheme for 3G+ Systems

  • Wang, Weidong;Wang, Zongwen;Zhao, Xinlei;Zhang, Yinghai;Zhou, Yao
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2012
  • As Internet protocol and wireless communications have developed, the number of different types of mobile services has increased gradually. Existing priority-computing schemes cannot satisfy the dynamic requirements of supporting multiple services in future wireless communication systems, because the currently used factors, mainly user priority, are relatively simple and lack relevancy. To solve this problem and provide the desired complexity, dynamic behavior, and fairness features of 3G and beyond 3G mobile communication systems, this paper proposes a novel cross-layer dynamic integrated priority-computing scheme that computes the priority based on a variety of factors, including quality of service requirements, subscriber call types, waiting time, movement mode, and traffic load from the corresponding layers. It is observed from simulation results that the proposed dynamic integrated priority scheme provides enhanced performance.

ITU-R Activities for Standardization of 6G Technologies (ITU-R에서의 6G 표준화 동향)

  • C.I. Yeh;K.S. Chang;Y.J. Ko;I.G. Kim
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.3
    • /
    • pp.87-97
    • /
    • 2024
  • With the timeline released by ITU-R (Radiocommunication Sector of the International Telecommunication Union), research and development activities for the International Mobile Telecommunications for 2030 and beyond (IMT-2030) are now in full swing. We provide an overview of the general process of making global core specifications for next-generation mobile systems and summarize the ITU-R Recommendation of the IMT-2030 Framework. The ITU-R Recommendation focuses on IMT-2030 usage scenarios and related capabilities. The expectations of 3GPP (Third Generation Partnership Project) activities for the proposal of candidate IMT-2030 global core specifications to the ITU-R are also discussed. The launch of IMT-2030 for commercial purposes is expected to begin in 2030.

Transmission Techniques for Downlink Multi-Antenna MC-CDMA Systems in a Beyond-3G Context

  • Portier Fabrice;Raos Ivana;Silva Adao;Baudais Jean-Yves;Helard Jean-Francois;Gameiro Atilio;Zazo Santiago
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.157-170
    • /
    • 2005
  • The combination of multiple antennas and multi-carrier code division multiple-access (MC-CDMA) is a strong candidate for the downlink of the next generation mobile communications. The study of such systems in scenarios that model real-life trans-missions is an additional step towards an optimized achievement. We consider a realistic MIMO channel with two or four transmit antennas and up to two receive antennas, and channel state information (CSI) mismatches. Depending on the mobile terminal (MT) class, its number of antennas or complexity allowed, different data-rates are proposed with turbo-coding and asymptotic spectral efficiencies from 1 to 4.5 bit/s/Hz, using three algorithms developed within the European IST-MATRICE project. These algorithms can be classified according to the degree of CSI at base-station (BS): i) Transmit space-frequency prefiltering based on constrained zero-forcing algorithm with complete CSI at BS; ii) transmit beamforming based on spatial correlation matrix estimation from partial CSI at BS; iii) orthogonal space-time block coding based on Alamouti scheme without CSI at BS. All presented schemes require a reasonable complexity at MT, and are compatible with a single-antenna receiver. A choice between these algorithms is proposed in order to significantly improve the performance of MC-CDMA and to cover the different environments considered for the next generation cellular systems. For beyond-3G, we propose prefiltering for indoor and pedestrian microcell environments, beamforming for suburban macrocells including high-speed train, and space-time coding for urban conditions with moderate to high speeds.

Detection Techniques for High Dimensional Spatial Multiplexing MIMO System (다차원 공간다중화 MIMO 시스템의 복조 기법)

  • Lim, Sung-Ho;Kim, Kyungsoo;Choi, Ji-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.7
    • /
    • pp.413-423
    • /
    • 2014
  • With the increasing demands on high data rate, there has been growing interests in multi-input multi-output (MIMO) technology based on spatial multiplexing (SM) since it can transmit independent information in each spatial stream. Recent standards such as 3GPP LTE-advanced and IEEE 802.11ac support up to eight spatial streams, and massive MIMO and mm-wave systems that are expected to be included in beyond 4G systems are considering employment of tens to hundreds of antennas. Since the complexity of the optimum maximum likelihood based detection method increases exponentially with the number of antennas, low-complexity SM MIMO detection becomes more critical as the number of antenna increases. In this paper, we first review the results on the detection schemes for SM MIMO systems. In addition, massive MIMO reception schemes based on simple linear filtering which does not require exponential increment of complexity will be explained, followed by brief description on receiver design for future high dimensional SM MIMO systems.

Introducing Software Defined Radio to 4GWireless: Necessity, Advantage, and Impediment

  • Zamat, Hassan;Nassar, Carl R.
    • Journal of Communications and Networks
    • /
    • v.4 no.4
    • /
    • pp.344-350
    • /
    • 2002
  • This work summarizes the current state of the art in software radio for 4G systems. Specifically, this work demonstrates that classic radio structures, e.g., heterodyne reception, homodyne reception, and their improved implementations, are inadequate selections for multi-mode reception. This opens the door to software defined radio, a novel reception architecture which promises ease in multi-band, multi-protocol design. The work presents the many advantages of such an architecture, including flexibility, reduced cost via component reduction, and improved reliability via, e.g., the elimination of environmental instability. The work also explains the limitations that currently curtail the widespread use of SDR, including issues surrounding A/D converters, management of software and power, and clock generation. This provides direction for future research to enable the broad applicability of SDR in 4G cellular and beyond.

Applications of 5G and 6G in Smart Health Services

  • Al-Jawad, Fatimah;Alessa, Raghad;Alhammad, Sukainah;Ali, Batoola;Al-Qanbar, Majd;Rahman, Atta-ur
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.173-182
    • /
    • 2022
  • Healthcare organizations are overwhelmingly embracing smart value-based care strategies, which focuses on providing superior treatment at a significantly lower cost and quality of service (QoS). For these purposes, fifth generation (5G) of mobile service provides an innumerable improvement that clearly outperforms previous generations e.g., 3G and 4G. However, as with most advancements, 5G is projected to introduce new challenges, prompting the community to think about what comes next. This research was conducted to examine the most recent smart 5G technology applications and the solutions they provide to the healthcare industry. Finally, the paper discusses how the upcoming 6G technology has the potential to transform the future of healthcare sector even beyond the current 5G systems.

Technique Criteria Calculation for Next Generation Mobile Communication (차세대 이동통신을 위한 기술기준 산정)

  • Kim, Kyung-Seok;Hyeon, Yeong-Ju
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.3
    • /
    • pp.101-113
    • /
    • 2008
  • The new wireless multimedia environment is coming because of the variety of an user requirement and a traffic increase which we can not accept in the IMT-2000 present systems. To offer the wireless multimedia service the world wireless communication company which included the ITU-R is developing the standard and technique of 4G systems. We analyzed the technique criteria of the 4G wireless communication system in this paper which is based on that of WiBro System. The mobile communication traffic is predicted Up/Down-link of non-symmetric in the future. And we proposed the PHY layer parameters of occupied frequency bandwidth of Up/Down-link with both 1:3 and 1:6. And we verified this through the simulation. So we proposed the technique criteria for 4G wireless communication in this paper.

  • PDF