• Title/Summary/Keyword: system-level seismic response

Search Result 108, Processing Time 0.022 seconds

Seismic Fragility Assessment for Korean High-Rise Non-Seismic RC Shear Wall Apartment Buildings (국내 고층 비내진 철근콘크리트 벽식 아파트의 지진취약도 평가)

  • Jeon, Seong-Ha;Shin, Dong-Hyun;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.293-303
    • /
    • 2020
  • Seismic fragility was assessed for non-seismic reinforced concrete shear walls in Korean high-rise apartment buildings in order to implement an earthquake damage prediction system. Seismic hazard was defined with an earthquake scenario, in which ground motion intensity was varied with respect to prescribed seismic center distances given an earthquake magnitude. Ground motion response spectra were computed using Korean ground motion attenuation equations to match accelerograms. Seismic fragility functions were developed using nonlinear static and dynamic analysis for comparison. Differences in seismic fragility between damage state criteria including inter-story drifts and the performance of individual structural members were investigated. The analyzed building had an exceptionally long period for the fundamental mode in the longitudinal direction and corresponding contribution of higher modes because of a prominently insufficient wall quantity in such direction. The results showed that nonlinear static analyses based on a single mode tend to underestimate structural damage. Moreover, detailed assessments of structural members are recommended for seismic fragility assessment of a relatively low performance level such as collapse prevention. On the other hand, inter-story drift is a more appropriate criterion for a relatively high performance level such as immediate occupancy.

Seismic retrofitting by base-isolation of r.c. framed buildings exposed to different fire scenarios

  • Mazza, Fabio;Mazza, Mirko
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.267-277
    • /
    • 2017
  • Base-isolation is now being adopted as a retrofitting strategy to improve seismic behaviour of reinforced concrete (r.c.) framed structures subjected to far-fault earthquakes. However, the increase in deformability of a base-isolated framed building may lead to amplification in the structural response under the long-duration horizontal pulses of high-magnitude near-fault earthquakes, which can become critical once the strength level of a fire-weakened r.c. superstructure is reduced. The aim of the present work is to investigate the nonlinear seismic response of fire-damaged r.c. framed structures retrofitted by base-isolation. For this purpose, a five-storey r.c. framed building primarily designed (as fixed-base) in compliance with a former Italian seismic code for a medium-risk zone, is to be retrofitted by the insertion of elastomeric bearings to meet the requirements of the current Italian code in a high-risk seismic zone. The nonlinear seismic response of the original (fixed-base) and retrofitted (base-isolated) test structures in a no fire situation are compared with those in the event of fire in the superstructure, where parametric temperature-time curves are defined at the first level, the first two and the upper levels. A lumped plasticity model describes the inelastic behaviour of the fire-damaged r.c. frame members, while a nonlinear force-displacement law is adopted for the elastomeric bearings. The average root-mean-square deviation of the observed spectrum from the target design spectrum together with a suitable intensity measure are chosen to select and scale near- and far-fault earthquakes on the basis of the design hypotheses adopted.

Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls

  • Beiraghi, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.443-454
    • /
    • 2019
  • In order to reduce the residual drift of a structure in structural engineering field, a combined structural system (dual) consisting of steel buckling-restrained braced frame (BRBF) along with shear wall is proposed. In this paper, BRBFs are used with special reinforced concrete shear walls as combined systems. Some prototype models of the proposed combined systems as well as steel BRBF-only systems (without walls) are designed according to the code recommendations. Then, the nonlinear model of the systems is prepared using fiber elements for the reinforced concrete wall and appropriate elements for the BRBs. Seismic responses of the combined systems subjected to ground motions at maximum considered earthquake level are investigated and compared to those obtained from BRBFs. Results showed that the maximum residual inter-story drift from the combined systems is, on average, less than half of the corresponding value of the BRBFs. In this research, mean of absolute values of the maximum inter-story drift ratio demand obtained from combined systems is less than the 3% limitation, while this criterion has not been fulfilled by BRBF systems.

Seismic Reliability Assessment of Mid- and High-rise Post-tensioned CLT Shear Wall Structures

  • Sun, Xiaofeng;Li, Zheng;He, Minjuan
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.175-185
    • /
    • 2020
  • Currently, few studies have been conducted to comprehend the seismic reliability of post-tensioned (PT) CLT shear wall structures, due to the complexity of this kind of structural system as well as due to lack of a reliable structural model. In this paper, a set of 4-, 8-, 12-, and 16-storey benchmark PT CLT shear wall structures (PT-CLTstrs) were designed using the direct displacement-based design method, and their calibrated structural models were developed. The seismic reliability of each PT-CLTstr was assessed based on the fragility analysis and based on the response surface method (RSM), respectively. The fragility-based reliability index and the RSM-based reliability index were then compared, for each PT-CLTstr and for each seismic hazard level. Results show that the RSM-based reliabilities are slightly less than the fragility-based reliabilities. Overall, both the RSM and the fragility-based reliability method can be used as efficient approaches for assessing the seismic reliabilities of the PT-CLTstrs. For these studied mid- and high-rise benchmark PT-CLTstrs, following their fragility-based reliabilities, the 8-storey PT-CLTstr is subjected to the least seismic vulnerability; while, following their RSM-based reliabilities, the 4-storey PT-CLTstr is subjected to the least seismic vulnerability

Seismic assessment of transfer plate high rise buildings

  • Su, R.K.L.;Chandler, A.M.;Li, J.H.;Lam, N.T.K.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.287-306
    • /
    • 2002
  • The assessment of structural performance of transfer structures under potential seismic actions is presented. Various seismic assessment methodologies are used, with particular emphasis on the accurate modelling of the higher mode effects and the potential development of a soft storey effect in the mega-columns below the transfer plate (TP) level. Those methods include response spectrum analysis (RSA), manual calculation, pushover analysis (POA) and equivalent static load analysis (ESA). The capabilities and limitations of each method are highlighted. The paper aims, firstly, to determine the appropriate seismic assessment methodology for transfer structures using these different approaches, all of which can be undertaken with the resources generally available in a design office. Secondly, the paper highlights and discusses factors influencing the response behaviour of transfer structures, and finally provides a general indication of their seismic vulnerability. The representative Hong Kong building considered in this paper utilises a structural system with coupled shear walls and moment resisting portal-frames, above and below the TP, respectively. By adopting the wind load profile stipulated in the Code of Practice on Wind Effects: Hong Kong-1983, all the structural members are sized and detailed according to the British Standards BS8110 and the current local practices. The seismic displacement demand for the structure, when built on either rock or deep soil sites, was determined in a companion paper. The lateral load-displacement characteristic of the building, determined herein from manual calculation, has indicated that the poor ductility (brittle nature) of the mega-columns, due mainly to the high level of axial pre-compression as found from the analysis, cannot be effectively alleviated solely by increasing the quantity of confinement stirrups. The interstorey drift demands at lower and upper zones caused by seismic actions are found to be substantially higher than those arising from wind loads. The mega-columns supporting the TP and the coupling beams at higher zones are identified to be the most vulnerable components under seismic actions.

Seismic multi-level optimization of dissipative re-centering systems

  • Panzera, Ivan;Morelli, Francesco;Salvatore, Walter
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.129-145
    • /
    • 2020
  • Seismic resilience is a key feature for buildings that play a strategic role within the community. In this framework, not only the structural and non-structural elements damage but also the protracted structural dysfunction can contribute significantly to overall seismic damage and post-seismic crisis situations. Reduction of the residual and peak displacements and energy dissipation by replaceable elements are some effective aspects to pursue in order to enhance the resilience. Control systems able to adapt their response based on the nature of events, such as active or semi-active, can achieve the best results, but also require higher costs and their complexity jeopardizes their reliability; on the other hand, a passive control system is not able to adapt but its functioning is more reliable and characterized by lower costs. In this study it is proposed a strategy for the optimization of the dissipative capacity of a seismic resistant system obtained placing in parallel two different groups dissipative Re-Centering Devices, specifically designed to enhance the energy dissipation, one for the low and the other for the high intensity earthquakes. In this way the efficiency of the system in dissipating the seismic energy is kept less sensitive to the seismic intensity compared to the case of only one group of dissipative devices.

Performance-Based Seismic Design of High-rise Apartment Buildings in Korea Considering Collapse Prevention Level (붕괴방지 수준을 고려한 국내 고층 아파트의 성능기반 내진설계)

  • Lee, Minhee;Yoo, Changhwan;Kim, Taejin;Kim, Jong-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.181-190
    • /
    • 2016
  • The objective of this study is to apply performance-based seismic design to high-rise apartment buildings in Korean considering collapse prevention level. The possible issues during its application were studied and the suggestions were made based on the findings from the performance-based seismic design of a building with typical residential multi-unit layout. The lateral-force-resisting system of the building is ordinary shear walls system with a code exception of height limit. In order to allow the exception, the serviceability and the stability of the ordinary shear wall structure need to be evaluated to confirm that it has the equivalent performance as the one designed under the Korean Building Code 2009. The structure was evaluated whether it satisfied its performance objectives to withstand Service Level and Maximum Considered Earthquake.

Probabilistic sensitivity of base-isolated buildings to uncertainties

  • Gazi, Hatice;Alhan, Cenk
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.441-457
    • /
    • 2018
  • Characteristic parameter values of seismic isolators deviate from their nominal design values due to uncertainties and/or errors in their material properties and element dimensions, etc. Deviations may increase over service life due to environmental effects and service conditions. For accurate evaluation of the seismic safety level, all such effects, which would result in deviations in the structural response, need to be taken into account. In this study, the sensitivity of the probability of failure of the structures equipped with nonlinear base isolation systems to the uncertainties in various isolation system characteristic parameters is investigated in terms of various isolation system and superstructure response parameters in the context of a realistic three-dimensional base-isolated building model via Monte Carlo Simulations. The inherent record-to-record variability nature of the earthquake ground motions is also taken into account by carrying out analyses for a large number of ground motion records which are classified as those with and without forward-directivity effects. Two levels of nominal isolation periods each with three different levels of uncertainty are considered. Comparative plots of cumulative distribution functions and related statistical evaluation presented here portray the potential extent of the deviation of the structural response parameters resulting from the uncertainties and the uncertainty levels considered, which is expected to be useful for practicing engineers in evaluating isolator test results for their projects.

Evaluation of Seismic Performance of Mixed Building Structures by using the Nonlinear Displacement Mode Method (비선형 변위모드법을 적용한 복합구조물의 내진성능평가)

  • 김부식;송호산
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.71-80
    • /
    • 2003
  • Though a nonlinear time history analysis may be provided to estimate more exactly the seismic performance of building structure, approximation methods are still needed in the aspect of practicality and simplicity, In converting a multi-story structure to an equivalent SDOF system, the mode vectors of the multi-story structure are assumed as the mode shape in elastic state regardless of elastic or elastic-plastic state. However, the characteristics of displacement mode are also changed after the yielding made in the structural elements, because the structure becomes inelastic in each incremental load step. In this research, a method of converting MDOF system to ESDOF system is presented by using nonlinear displacement mode considering the mode change of structures after the yielding. Also, the accuracy and efficiency of the method of the nonlinear displacement mode method of the estimate of seismic response of Mixed Building Structures were examined by comparing the displacements of the roof level of the multi-story building structures estimated from this converted displacement response of ESDOF with the displacement of the roof level through the nonlinear dynamic analysis of the multi-story building structures subjected to an actual earthquake excitation.

Combination rules and critical seismic response of steel buildings modeled as complex MDOF systems

  • Reyes-Salazar, Alfredo;Valenzuela-Beltran, Federico;de Leon-Escobedo, David;Bojorquez-Mora, Eden;Barraza, Arturo Lopez
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.211-238
    • /
    • 2016
  • The Maximum seismic responses of steel buildings with perimeter moment resisting frames (MRF), modeled as complex MDOF systems, are estimated for several incidence angles of the horizontal components and the critical one is identified. The accuracy of the existing rules to combine the effects of the individual components is also studied. Two and three components are considered. The critical response does not occur for principal components and the corresponding incidence angle varies from one earthquake to another. The critical response can be estimated as 1.40 and 1.10 times that of the principal components, for axial load and interstory shears, respectively. The rules underestimate the axial load but reasonably overestimate the shears. The rules are not always inaccurate in the estimation of the combined response for correlated components. On the other hand, totally uncorrelated (principal) components are not always related to an accurate estimation. The correlation of the individual effects (${\rho}$) may be significant, even for principal components. The rules are not always associated to an inaccurate estimation for large values of ${\rho}$, and small values of ${\rho}$ are not always related to an accurate estimation. Only for perfectly uncorrelated harmonic excitations and elastic analysis of SDOF systems, the individual effects of the components are uncorrelated and the rules accurately estimate the combined response. The degree of correlation of the components, the type of structural system, the response parameter under consideration, the location of the structural member and the level of structural deformation must be considered while estimating the level of underestimation or overestimation.