• Title/Summary/Keyword: system velocity

Search Result 6,217, Processing Time 0.035 seconds

An Automatic Speed Control System of a Treadmill with Ultrasonic Sensors (초음파 센서를 이용한 트레드밀의 자동속도 제어시스템)

  • Auralius, Manurung;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.505-511
    • /
    • 2011
  • In this paper, we have developed an automatic velocity control system of a small-sized commercial treadmill (belt length of 1.2 m and width of 0.5 m) which is widely used at home and health centers. The control objective is to automatically adjust the treadmill velocity so that the subject's position is maintained within the track when the subject walks at a variable velocity. The subject's position with respect to a reference point is measured by a low-cost sonar sensor located on the back of the subject. Based on an encoder sensor measurement at the treadmill motor, a state feedback control algorithm with Kalman filter was implemented to determine the velocity of the treadmill. In order to reduce the unnatural inertia force felt by the subject, a predefined acceleration limit was applied, which generated smooth velocity trajectories. The experimental results demonstrate the effectiveness of the proposed method in providing successful velocity changes in response to variable velocity walking without causing significant inertia force to the subject. In the pilot study with three subjects, users could change their walking velocity easily and naturally with small deviations during slow, medium, and fast walking. The proposed automatic velocity control algorithm can potentially be applied to any locomotion interface in an economical way without having to use sophisticated and expensive sensors and larger treadmills.

ECAM Control System Based on Auto-tuning PID Velocity Controller with Disturbance Observer and Velocity Compensator

  • Tran, Quang-Vinh;Kim, Won-Ho;Shin, Jin-Ho;Baek, Woon-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.113-118
    • /
    • 2010
  • This paper proposed an ECAM (Electronic cam) control system which has simple and general structure. The proposed cam controller adopted the linear and polynomial curve-fitting method to generates a smooth cam profile curve function. Smooth motion trajectory of master actuator guarantees the good performance of slave motion and has an important effect on the interpolation quality of ECAM. The auto-tuning PID velocity controller was applied to overcome the uncertainties in ECAM, and the gains of the controller are updated continuously to ensure the consistency of system performance under varying working conditions. The robustness of system against the varying load torque disturbances and noises is guaranteed by using the load torque disturbance observer to suppress the disturbance on master actuator. The velocity compensator was applied to compensate the degradation of performance of slave motion caused from the varying driving speed of master motion. The stability and validity of the proposed ECAM control system was verified by simulation results.

Analytical and Experimental Comparison of the Velocity of a Supersonic Projectile in the Soft Recovery System (저감속 회수장비에서 초음속 시험탄 속도에 대한 이론적 및 실험적 비교 연구)

  • Song, Minsup;Kim, Jaehoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.619-628
    • /
    • 2021
  • In order to compare numerical analyses made by Song and Kim needed for predicting gas and water filling with experimental results we conducted an experiment to recover a test projectile (43.7 kg with a 155 mm diameter) at a velocity of 775 m/s in a soft recovery system with a length of 179 m using pressurized gas and filled water. The soft recovery system consisting of a series of pressure tubes had a diaphragm, piston, and water plug for filling the pressurized gas and water. We installed a continuous wave Doppler radar system for velocity measurements of the test projectile travelling in the pressure tubes and pressure transducers for measuring the pressure in the soft recovery system. Continuous wave Doppler radar has the advantage of achieving real-time measurements of the velocity of a test projectile. The velocity-time curve of the test projectile, measured using the continuous wave Doppler radar, and the pressure profile were compared with the numerical analysis results. The experiment results show good agreement with the numerical analysis results based on the one-dimensional Euler equation with an HLL Riemann solver.

Analysis of Ventilation Efficiency by Duct System in Pig House (돈사 덕트 환기시스템의 효율 분석)

  • Song, J.I.;Yoo, Y.H.;Lee, D.S.;Choi, H.C.;Kang, H.S.;Kim, T.I.;Jeon, B.S.;Park, C.H.;Kim, H.H.
    • Journal of Animal Environmental Science
    • /
    • v.8 no.2
    • /
    • pp.73-78
    • /
    • 2002
  • The experiment was carried out to investigate the optimal air velocity for improving the ventilation efficiency of duct ventilation system used in Korean swine building. The results are followed ; In 2.2 m height of duct, the air velocity of hole was 5.0 m/s as the over level of recommendation. In different hole interval, the air velocity was various of 4.6${\sim}$11.6 m/s in narrow hole interval, 5.4${\sim}$10.9 m/s in broad hole interval. But the air velocity was 6.6${\sim}$7.7 m/s in duct system pierced hole with equal interval, and it was equal velocity in different parts of duct in this hole interval.

  • PDF

Velocity Measurement System Design Based on Quantization Error Constraint

  • Katsunori, Shida;Toyonori, Matsuda
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.86.1-86
    • /
    • 2001
  • Combined with a counter, wheel or strip encoders which have equally divided markers are one of frequent measuring choices towards various applications in terms of cost, simplicity, and diversity of measurements, e.g., measuring displacement, velocity, acceleration, and so on. Often, velocity is measured by counting the series of reference clocks for a period of time which sensor-carrying device took for traveling two adjacent encoding markers. Quantizaion error of such that the disturbance caused by quantization error is under control. This paper identifies design issues, developes theory, and proposes a paradigm to design a velocity measurement system such ...

  • PDF

An Onboard Measurement System of Ultrasonic Velocity and Attenuation using the Wavelet Transform

  • Cho, Seog-bin;Ha, Sung-kil;Jung, Sung-Yun;Baek, Kwang-ryul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1826-1828
    • /
    • 2004
  • In this paper, we present an ultrasonic velocity and attenuation measurement system. There are many ultrasonic measurement methods that are used in nondestructive testing applications. They include material property determination, microstructural characterization, and flaw detection. Ultrasonic parameters such as velocity and attenuation are most commonly used in them. Advanced signal analysis which is called "ime-frequency analysis"has been used widely in nondestructive evaluation applications. Wavelet transform is the most advanced technique for processing signals with time-varying spectra. Using the echo waveform gathered by the designed hardware system, we performed simulation of the signal processing algorithms. Then the algorithm is implemented on the system.

  • PDF

Development of 2-frame PTV system and its application to a channel flow (2-프레임 PTV 시스템의 개발 및 채널유동에의 응용)

  • Baek, Seung-Jo;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.874-887
    • /
    • 1998
  • A 2-frame PTV (particle tracking velocimetry) system using the concept of match probability between two consequent image frames has been developed to obtain instantaneous velocity fields. The overall 2-frame PTV system including image pre-processing, tracking algorithm and post-processing routine was implemented to apply to real flows. The developed 2-frame PTV system has several advantages such as high recovery ratio of velocity vectors, low error ratio and small computational time compared with the conventional 4-frame PTV and the FFT-based cross-correlation PIV technique. The 2-frame PTV system was applied to a turbulent channel flow over a rectangular block to check its reliability and usefulness. Total 96 sequential image frames have been captured and processed to get both mean and fluctuating velocity vector fields over the recirculating region. The mean velocity and turbulent intensity profiles were well agreed with hte LDV measurements in the separated region behind the block. Time-averaged reattachment length is about 6.3 times of the block height.

Validation of Digital Holographic Particle Velocity Measurement System (디지털 홀로그래피 입자 속도 계측시스템의 검증)

  • Roh, H.S.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.119-125
    • /
    • 2013
  • Digital holographic particle velocity measurement system can be a promising optical tool for the measurements of three dimensional particle velocities. In this research, validation experiments for the digital holographic particle velocity measurement system were conducted with measuring the velocities of glass beads on a rotating disk. Uncertainty analysis was performed to identify the sources of all relevant errors and to evaluate their magnitudes. The measurement results of particle velocities obtained with digital holographic method are compared reasonably well with the known values within acceptable range of errors. Moreover, digital holographic method showed better performance compared with that of optical holographic system.

Mean Velocity of Globular Cluster Systems in M86 Virgo Giant Elliptical Galaxy and Massive Early-Type Galaxies

  • Park, Hong Soo;Lee, Myung Gyoon;Arimoto, Nobuo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.33.3-34
    • /
    • 2015
  • We present the spectroscopic study of the globular clusters (GCs) in the massive elliptical galaxy M86 in the Virgo galaxy cluster. Using the spectra obtained from the Multi-Object Spectroscopy (MOS) mode of Faint Object Camera and Spectrograph (FOCAS) on the Subaru Telescope, we measure the radial velocities for 56 GCs in M86. The mean velocity of the GCs is derived to be $<v_p>=-335{\pm}41km/s$, which is different from the velocity of the M86 nucleus ($<v_{gal}>=-224{\pm}5km/s$) within ${\sim}2.5{\sigma}$. The mean velocity ($<v_p>=-342{\pm}60km/s$) of 33 blue GCs in M86 is similar to that ($<v_p>=-314{\pm}71km/s$) of 23 red GCs. We also derive the mean velocities of the GC systems in other 16 nearby early-type galaxies (ETGs) from the radial velocity data in the literature. The mean value of the differences between the mean velocity of the GC systems in each galaxy and the nucleus velocity of their host galaxies, is almost zero except the M86 GC system. But the scatter of the differences in the blue GC system is larger than that in the red GC system. We will discuss these results in the context of GC formation in ETGs.

  • PDF

Turbulent Flow Field Structure of Initially Asymmetric Jets

  • Kim, Kyung-Hoon;Kim, Bong-Whan;Kim, Suk-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1386-1395
    • /
    • 2000
  • The mear field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemometry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. There pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the upstream of the pipe exit, secondary flow through the bend mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameter-long straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases.

  • PDF