• Title/Summary/Keyword: system uncertainty

Search Result 2,446, Processing Time 0.032 seconds

Pitch-axis Maneuver of UAVs by Adaptive Control Approach (무인항공기의 적응제어 법칙을 이용한 피치 기동 연구)

  • Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1170-1176
    • /
    • 2010
  • This study addresses adaptive control of UAVs(Unmanned Aerial Vehicles) pitch-axis maneuver. The MRAC(Model Referenced Adaptive Control) approach is employed to accommodate uncertainties which are introduced by feedback linearization of pitch attitude control by elevator input. The model uncertainty is handled by adaptation laws which update model parameters while the UAV is under control by the feedback control law. Steady-state pitch attitude achieved by the stabilizing control law is derived to provide insight on the closed-loop behavior of the controlled system. The proposed idea is free of linearization, gain-scheduling procedures, so that one can design high maneuverability of UAVs for pitching motion in the presence of significant model uncertainty.

Estimating Influence of Biogenic Volatile Organic Compounds on High Ozone Concentrations over the Seoul Metropolitan Area during Two Episodes in 2004 and 2007 June (자연배출량이 수도권 고농도 오존 사례에 미치는 영향범위 추정: 2004년과 2007년 6월 사례를 중심으로)

  • Kim, Soon-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.751-771
    • /
    • 2011
  • Biogenic Volatile Organic Compound (BVOC) emissions are estimated with BEIS3.12 (Biogenic Emissions Inventory System version 3.12) over the Seoul Metropolitan Area (SMA) and then used in CMAQ (Community Multiscale Air Quality) simulations for two high ozone episodes in 2004 and 2007 June. The first- and second-order sensitivity coefficients of ozone to BVOC emissions are estimated with High-order Decoupled Direct Method (HDDM) simulation in order to estimate the influence of BVOC emissions on ozone using the Zero-Out Contribution (ZOC) approach. ZOC analysis shows that relative contribution of BVOC emissions on daily maximum 1-hr ozone is as high as 30% for high ozone days above 100 ppb. However simulated isoprene concentrations were over-estimated by a factor of 2 when compared to the observations at the PAMS (Photochemical Air Monitoring Station) for the 2007 episode. When assumed that actual BVOC emissions are 50% less than estimated, the ZOC of BVOC emissions on daily maximum ozone drops by more than 10 ppb for the episode. The result indicates that uncertainty in BVOC emissions may have significant impact on high ozone prediction in the SMA.

Robust Controller Design for Flexible Robot Arm Manipulator (유연한 로봇팔의 선단 위치 제어를 위한 강인한 제어기의 설계)

  • 신봉철;이형기;최연욱;안영주
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.76-82
    • /
    • 2002
  • The objective of this paper is to design a robust controller for a flexible robot arm manipulator using LMI(Linear Matrix Inequality) theory, and confirm its effectiveness through experimentation. We first describe a modeling Process of the flexible arm in order to get a mathematical model, and then discuss how to approximately obtain the uncertainty of the model for robust control. As to the control system design, we adopt the LMI-based H$_{\infty}$ synthesis algorithm which has the merits of eliminating the regularity restrictions attached to the Riccati-based methods. As a result of this, we can cope with the parameter variation (that is, modeling uncertainty) due to the tip-load variation. Finally we confirm the effectiveness of the controller through experiment and simulation.

  • PDF

The Research of Velocity Estimation Method in Pipe Pumping for Slurry Transportation (슬러리 이송을 위한 관내 유속 추정 방법 연구)

  • Kwon, Seunghee;Jeong, Soonyong;Kim, Yuseung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.21-32
    • /
    • 2014
  • This Research have suggested the new estimation method using parameter estimation algorithm to substitute established velocity and friction factor calculation equation. Established calculation equation has some difficulties for estimation and reflecting exactly flow specification cause parameter uncertainty and material uncertainty governed real phenomenon, so this research has used system modeling method for flow specification estimation and suggested estimation method.

A Study on Effects of Wireless Devices using Similar Frequency for Location Determination Precision (동일한 주파수 대역을 사용하는 무선기기가 측위 정확도에 미치는 영향)

  • Jang, Jung-Hwan;Jang, Jing-Lun;Kwon, Hyeok-Cheol;Li, Guang-Zhu;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.305-311
    • /
    • 2014
  • Recently, though it was developed several services using the context-awareness technology of IoT, there exist also obstacles for high quality service. Specifically it is short the study for uncertainty of context-awareness. This study focused on understanding the effect of frequency interference among several environmental factors for location determination to increase precision of location determination. It was found that frequency interference between devices using 2.4Ghz frequency effect on the location determination precision. It was resulted that frequency interference increase the error of location determination precision. Then, we confirmed that it was required the suitable compensation method corresponding to frequency interference.

Performance Evaluation of Five-DOF Motion under Static and Dynamic Conditions of Ultra-precision Linear Stage (초정밀 직선 스테이지에서 5 자유도 운동의 정적 및 동적 성능 평가)

  • Lee, Jae-Chang;Lee, Kwang-Il;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.423-430
    • /
    • 2014
  • In this study, the five-DOF motion at ultra-precision linear stage under static and dynamic conditions are evaluated through the extending application of ISO 230-2. As the performance factors, the bi-directional accuracy and repeatability of the five-DOF motion are quantitatively evaluated with the measurement uncertainties which are determined using the standard uncertainty of equipment used in experiment. The motion under static condition are analyzed using geometric errors. The five geometric errors except the linear displacement error are measured using optimal measurement system which is designed to enhance the standard uncertainty of geometric errors. In addition, the motion under dynamic conditions are analyzed with respect to the conditions with different feed rate of the stage. The experimental results shows that the feed rate of stage has a significant effect on straightness motions.

Implementation of Bayesian Filter Method and Range Measurement Analysis for Underwater Robot Localization (수중로봇 위치추정을 위한 베이시안 필터 방법의 실현과 거리 측정 특성 분석)

  • Noh, Sung Woo;Ko, Nak Yong;Kim, Tae Gyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.28-38
    • /
    • 2014
  • This paper verifies the performance of Extended Kalman Filter(EKF) and MCL(Monte Carlo Localization) approach to localization of an underwater vehicle through experiments. Especially, the experiments use acoustic range sensor whose measurement accuracy and uncertainty is not yet proved. Along with localization, the experiment also discloses the uncertainty features of the range measurement such as bias and variance. The proposed localization method rejects outlier range data and the experiment shows that outlier rejection improves localization performance. It is as expected that the proposed method doesn't yield as precise location as those methods which use high priced DVL(Doppler Velocity Log), IMU(Inertial Measurement Unit), and high accuracy range sensors. However, it is noticeable that the proposed method can achieve the accuracy which is affordable for correction of accumulated dead reckoning error, even though it uses only range data of low reliability and accuracy.

Model Matching for Composite Asynchronous Sequential Machines in Cascade Connection (직렬 결합된 복합 비동기 순차 머신을 위한 모델 정합)

  • Yang, Jung-Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.253-261
    • /
    • 2013
  • In this paper, we study the problem of controlling composite asynchronous sequential machines. The considered asynchronous machine consists of two input/state machines in cascade connection, where the output of the front machine is delivered to the input channel of the rear machine. The objective is to design a corrective controller realizing model matching such that the stable state behavior of the closed-loop system matches that of a reference model. Since the controller receives the state feedback of the rear machine only, there exists uncertainty about the present state of the front machine. We specify the existence condition for a corrective controller given the uncertainty. The design procedure for the proposed controller is described in a case study.

Classification-Based Approach for Hybridizing Statistical and Rule-Based Machine Translation

  • Park, Eun-Jin;Kwon, Oh-Woog;Kim, Kangil;Kim, Young-Kil
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.541-550
    • /
    • 2015
  • In this paper, we propose a classification-based approach for hybridizing statistical machine translation and rulebased machine translation. Both the training dataset used in the learning of our proposed classifier and our feature extraction method affect the hybridization quality. To create one such training dataset, a previous approach used auto-evaluation metrics to determine from a set of component machine translation (MT) systems which gave the more accurate translation (by a comparative method). Once this had been determined, the most accurate translation was then labelled in such a way so as to indicate the MT system from which it came. In this previous approach, when the metric evaluation scores were low, there existed a high level of uncertainty as to which of the component MT systems was actually producing the better translation. To relax such uncertainty or error in classification, we propose an alternative approach to such labeling; that is, a cut-off method. In our experiments, using the aforementioned cut-off method in our proposed classifier, we managed to achieve a translation accuracy of 81.5% - a 5.0% improvement over existing methods.

Identifying Significant Components of Structures for Seismic Performance Using FOSM Method (FOSM 방법을 이용한 내진성능 중요부재 판별법)

  • Lee, Tae-Hyung;Mosalam, Khalid
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.37-45
    • /
    • 2009
  • The identification of significant structural components under seismic loading through a probabilistic approach is of interest to many structural engineers. The First-Order Second Moment method can be used to achieve this goal by estimating uncertainty in the seismic demand of a structural system induced by the capacity uncertainties of each structural component. Significant structural components are those to which the seismic demand of the structure is more sensitive than it is to other ones. The developed procedure demonstrated by a ductile reinforced concrete frame shows that it is computationally effective and robust in terms of identifying significant structural components.