• Title/Summary/Keyword: system uncertainty

Search Result 2,446, Processing Time 0.036 seconds

Statistical Reliability Analysis of Numerical Simulation for Prediction of Model-Ship Resistance (선체 저항에 대한 수치 해석의 통계적 신뢰도 분석)

  • Lee, Sang Bong;Lee, Youn Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.321-327
    • /
    • 2014
  • A wide scope of numerical simulations was performed to predict model-ship resistances by using STAR-CCM+ and OpenFOAM. The numerical results were compared with experimental measurements in towing tank to analyze statistical reliability of the present simulations. Based on the normal distribution of resistance errors in 113 cases of container carriers, tankers and very large crude-oil carriers, the confidence intervals of numerical error were estimated as [-2.64%,+2.32%] and [-1.82%, +1.87%] with 95% confidence in STAR-CCM+ and OpenFOAM, respectively. The resistance errors of liquefied natural gas carriers with single- and twin-skeg were confident in the ranges of [-2.51%,+2.64%] and [-2.29%, +1.46%], respectively. The grid uncertainty of resistance coefficients for KCS was also quantitatively analyzed by using a grid verification procedure. The grid uncertainty of OpenFOAM (5.1%) was larger than 4.4% uncertainty of STAR-CCM+ although OpenFOAM provided statistically more confident results than those of STAR-CCM+. It means that a grid system verified under a specific condition does not automatically lead to statistical reliability in general cases.

Uncertainty Study: Information Seeking Behaviors of Doctoral Students in Business Management (정보행태 불확신성에 관한 연구 - 경영학분야 박사과정 연구자들을 중심으로 -)

  • Kim, Yang-Woo
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.23 no.1
    • /
    • pp.65-89
    • /
    • 2012
  • Using grounded theory, this study investigated users' information seeking behaviors associated with their perceptions of uncertainty. Based on a theoretical sampling, 17 doctoral students in the field of business management were recruited. Data was collected through the methods of questionnaire, interviewing, and think-aloud descriptions. The results identified user perceptions of uncertainty in the following stages: identification of information needs, selection of information systems, selection of search terms, actual use of systems, and evaluation of search results. In addition, positive aspects of uncertainties were presented. Major implications relate to information system and service improvements.

Design of Robust Torque Controller for an Internal Combustion Engine with Uncertainty (내연기관의 강인한 토크제어를 위한 제어계 설계법)

  • Kim, Young-Bok;Jeong, Jeong-Soon;Lee, Kwon-Soon;Kang, Heui-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1029-1037
    • /
    • 2010
  • If an internal combustion engine is operated by consolidated control, the minimum fuel consumption is achieved and the demanded objectives are satisfied. For this, it is necessary that the engine is operated on the ideal operating line which satisfies minimum fuel consumption. In this context of view, there are many tries to achieve given object. However, the parameters in the internal combustion engines are variable and depend on the operating points. Therefore, it is necessary to cope with the uncertainties such that the optimal operating may be possible. From this point of view, this paper gives a controller design method and a robust stability condition for engine torque control which satisfies the given control performance and robust stability in the presence of physical parameter perturbation. Exactly, in this paper, we consider the robust stability problem of this 2DOF servosystem with nonlinear type uncertainty in the engine system, and a robust stability condition for the servosystem is shown. This result guarantees that if the plant uncertainty is in the permissible set defined by the given condition, then a gain tuning can be carried out to suppress the influence of the plant uncertainties.

An experience of Patients Who Follow Oriental Medicine After Cancer Diagnosis (암진단 이후 한방진료를 이용하는 암환자의 경험에 관한 연구)

  • Jun, Myung Hee
    • Journal of Haehwa Medicine
    • /
    • v.6 no.1
    • /
    • pp.567-584
    • /
    • 1997
  • Most of cancer therapy consists of surgery, chemotherapy and radiotherapy developed by modern western medicine. Often Korean patients use both modem western and oriental medicine through their cancer life. This study tried out to answer the the question : "What are the experience of a Korean cancer patients who follow oriental medicine after cancer diagnosis?" To answer to that, a micro-ethnographic research method was used. Total 6 patients were observed from March, 1996 to February, 1997. Data were obtained through interview, participant observation, audio-tape recording, field recoding, field note-taking, and ralated documents Using an analytical tool known as "pencil and scissors", the data were analyzed. First, I learned patietnts' accounts for cancer experience following oriental medicine, and I could found that they expereinced "feeling of uncertainty" through cancer life. Second, major argument was searched. : Feeling of uncertainty of cancer patients was extremely increased after cancer diagnosis. Oriental Medicine made cancer patients not only expect to improve general physical condition, but also gave them significnat emotional support to overcome their feeling of uncertanty. Third, I examined how did this argument form meanings in the context of individual life. Modem western mediacal service system could not satisfy cancer patients' informational and emotional need. But oriental medicine contribute to relieve the degree of their feeling of uncertainty. As a result of these understandings, I suggest that modern wetern medicine need to be concerned to feeling of uncertainty of cancer patietns and infomational service, and oriental medicine counsel with cancer patients much more systemically. Also nurses must improve cancer education with more accurate and practical information based on empirical data.

  • PDF

Evaluation of a Land Use Change Matrix in the IPCC's Land Use, Land Use Change, and Forestry Area Sector Using National Spatial Information

  • Park, Jeongmook;Yim, Jongsu;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.295-304
    • /
    • 2017
  • This study compared and analyzed the construction of a land use change matrix for the Intergovernmental Panel on Climate Change's (IPCC) land use, land use change, and forestry area (LULUCF). We used National Forest Inventory (NFI) permanent sample plots (with a sample intensity of 4 km) and permanent sample plots with 500 m sampling intensity. The land use change matrix was formed using the point sampling method, Level-2 Land Cover Maps, and forest aerial photographs (3rd and 4th series). The land use change matrix using the land cover map indicated that the annual change in area was the highest for forests and cropland; the cropland area decreased over time. We evaluated the uncertainty of the land use change matrix. Our results indicated that the forest land use, which had the most sampling, had the lowest uncertainty, while the grassland and wetlands had the highest uncertainty and the least sampling. The uncertainty was higher for the 4 km sampling intensity than for the 500 m sampling intensity, which indicates the importance of selecting the appropriate sample size when constructing a national land use change matrix.

Uncertainty Analysis of 1 GHz Band Impulse Spectrum Amplitude (1 GHz 대역 임펄스의 스펙트럼 진폭 불확도 평가)

  • Lee, Dong-Joon;Lee, Joo-Gwang;Kwon, Jae-Yong;Kang, Tae-Weon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1365-1372
    • /
    • 2012
  • This paper presents a methodology to accurately evaluate the spectral components of impulse signals which are delivered from an impulse generator through the measurement system. The complicated terms for uncertainty measurement of impulse spectrum amplitude and their analysis methods and experimental results are discussed. The expanded uncertainty of the impulse spectrum measurement is 0.015, which is believed to be the best domestic measurement capability and comparable to those of world class.

Uncertainty analyses of spent nuclear fuel decay heat calculations using SCALE modules

  • Shama, Ahmed;Rochman, Dimitri;Pudollek, Susanne;Caruso, Stefano;Pautz, Andreas
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2816-2829
    • /
    • 2021
  • Decay heat residuals of spent nuclear fuel (SNF), i.e., the differences between calculations and measurements, were obtained previously for various spent fuel assemblies (SFA) using the Polaris module of the SCALE code system. In this paper, we compare decay heat residuals to their uncertainties, focusing on four PWRs and four BWRs. Uncertainties in nuclear data and model inputs are propagated stochastically through calculations using the SCALE/Sampler super-sequence. Total uncertainties could not explain the residuals of two SFAs measured at GE-Morris. The combined z-scores for all SFAs measured at the Clab facility could explain the resulting deviations. Nuclear-data-related uncertainties contribute more in the high burnup SFAs. Design and operational uncertainties tend to contribute more to the total uncertainties. Assembly burnup is a relevant variable as it correlates significantly with the SNF decay heat. Additionally, burnup uncertainty is a major contributor to decay heat uncertainty, and assumptions relating to these uncertainties are crucial. Propagation of nuclear data and design and operational uncertainties shows that the analyzed assemblies respond similarly with high correlation. The calculated decay heats are highly correlated in the PWRs and BWRs, whereas lower correlations were observed between decay heats of SFAs that differ in their burnups.

A Study on the DC Critical Current Test Method for 22.9kV/50MV A Superconducting Power Cable Considering the Uncertainty (불확도를 고려한 22.9kV, 50MVA급 초전도 전력케이블의 직류 임계전류 측정방법에 관한 연구)

  • Choi, S.J.;Lee, S.J.;Sim, K.D.;Cho, J.W.;Lee, S.K.;Yang, B.M.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.46-49
    • /
    • 2009
  • A 3-phase 100m long, 22.9kV class HTS power transmission cable system was developed by Korea Electrotechnology Research Institute (KERI) and LS cable Ltd. those are participated in the 21st Century Frontier project R&D Program of Korea. It is important to test the DC critical current related with its power capacity before applying to the real power grid. In 1995, several international standards organizations including International Electrotechnical Commission (IEC), decided to unify the use of statistical terms related with 'accuracy' or 'precision' in their standards. It was decided to use the word 'uncertainty' for all quantitative (associated with a number) statistical expressions. In this paper, we measured DC critical current of 22.9kV/50MVA superconducting power cable with several voltage tap and analyzed the uncertainty with these results.

BEPU analysis of a CANDU LBLOCA RD-14M experiment using RELAP/SCDAPSIM

  • A.K. Trivedi;D.R. Novog
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1448-1459
    • /
    • 2023
  • A key element of the safety analysis is Loss of Coolant Analysis (LOCA) which must be performed using system thermal-hydraulic codes. These codes are extensively validated against separate effect and integral experiments. RELAP/SCDAPSIM is one such code that may be used to predict LBLOCA response in a CANDU reactor. The RD-14M experiment selected for the Best Estimate Plus Uncertainty study is a 44 mm (22.7%) inlet header break test with no Emergency Coolant Injection. This work has two objectives first is to simulate pipe break with RELAP and compare these results to those available from experiment and from comparable TRACE calculations. The second objective is to quantify uncertainty in the fuel element sheath (FES) temperature arising from model coefficient as well as input parameter uncertainties using Integrated Uncertainty Analysis package. RELAP calculated results are found to be in good agreement with those of TRACE and with those of experiments. The base case maximum FES temperature is 335.5 ℃ while that of 95% confidence 95th percentile is 407.41 ℃ for the first order Wilk's formula. The experimental measurements fall within the predicted band and the trends and sensitivities are similar to those reported for the TRACE code.

A SE Approach for Machine Learning Prediction of the Response of an NPP Undergoing CEA Ejection Accident

  • Ditsietsi Malale;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.18-31
    • /
    • 2023
  • Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased interest in recent years. To contribute to this area of research, a machine learning model capable of accurately predicting nuclear power plant response with minimal computational cost is proposed. To develop a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate a database to train three models and select the best of the three. The BEPU analysis was performed by coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks' theorem to obtain a statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% confidence level. The generated database was used to train three models based on Recurrent Neural Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering approach was utilized to identify requirements, stakeholders, and functional and physical architecture to develop this project and ensure success in verification and validation activities necessary to ensure the efficient development of ML meta-models capable of predicting of the nuclear power plant response.