Jeong-Won Park;Hyun-Cheol Kim;Minji Seo;Ji-Eun Park;Jinku Park
Korean Journal of Remote Sensing
/
v.39
no.3
/
pp.257-268
/
2023
Sea ice plays an important role in Earth's climate by regulating the amount of solar energy absorbed and controlling the exchange of heat and material across the air-sea interface. Its growth, drift, and melting are monitored on a regular basis by satellite observations. However, low-resolution products with passive microwave radiometer have reduced accuracy during summer to autumn when the ice surface changes rapidly. Synthetic aperture radar (SAR) observations are emerging as a powerful complementary, but previous researches have mainly focused on winter ice. In this study, sea ice drift tracking was evaluated and analyzed using SAR images and tracker with global positioning system (GPS) during late summer-early autumn period when ice surface condition changes a lot. The results showed that observational uncertainty increases compared to winter period, however, the correlation coefficient with GPS measurements was excellent at 0.98, and the performance of the ice tracking algorithm was proportional to the sea ice concentration with a correlation coefficient of 0.59 for ice concentrations above 50%.
Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.
Na, Jun Young;Kang, Tae Young;Baek, Geum Mun;Kwon, Gyeong Tae
The Journal of Korean Society for Radiation Therapy
/
v.25
no.1
/
pp.49-55
/
2013
Purpose: Respiratory Gated Radiation Therapy (RGRT) has been carried out using RPM (Real-time Position Management) Respiratory Gating System (version 1.7.5, varian, USA) in Asan Medical Center. This study was to analyze and evaluate the accuracy of Respiratory Gated Radiation Therapy (RGRT) according to variation of respiration. Materials and Methods: Making variation of respiration using Motion Phantom:QUASAR Programmable Respiratory Motion Phantom (Moudus Medical Device Inc. CANADA) able to adjust respiration pattern randomly was varying period, amplitude and baseline by analyze 50 patient's respiration of lung and liver cancer. One of the variations of respiration is baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. The other variation of respiration is baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm. Experiments were performed in the same way that is used RPM Respiratory Gating System (phase gating, usually 30~70% gating) in Asan Medical Center. Results: It was all exposed radiation under one of the conditions of baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. Under the other condition of baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm equally radiation was exposed. Conclusion: The variations of baseline shifts didn't accurately reflect on phase gating in RPM Respiratory Gating System. This inexactitude makes serious uncertainty in Respiratory Gated Radiation Therapy. So, Must be stabilized breathing of patient before conducting Respiratory Gated Radiation Therapy. also must be monitored breathing of patient in the middle of treatment. If you observe considerable changes of breathing when conducting Respiratory Gated Radiation Therapy. Stopping treatment immediately and then must be need to recheck treatment site using fluoroscopy. If patient's respiration rechecked using fluoroscopy restabilize, it is possible to restart Respiratory Gated Radiation Therapy.
Journal of the Earthquake Engineering Society of Korea
/
v.10
no.6
s.52
/
pp.93-102
/
2006
Control input's saturation of active control devices for large structures under large external disturbances are often occurred. It is more difficult to obtain the exact values of mass and stiffness as structures are higher. The modelling errors between mathematical models and real structures must be also included as parameter uncertainties. Therefore, in active vibration control of civil engineering structures like buildings and bridges, the robust saturation controller design method considering both control input's saturation and parameter uncertainties of system is needed. In this paper, stabilities of linear optimal controller LQR, modified bang-bang controller, saturated sliding mode controller, and robust saturation controller among various controllers which have been studied and applied to active vibration control of buildings are investigated. Especially, unstable phenomena of the LQR, the modified bang-bang controller and the saturated sliding mode controller when the control input is saturated or parameter uncertainties exist are presented to show the necessity of the robust saturation controller. The robust stability of the robust saturation controller are shown through a numerical example of a 2DOF linear vibrating system and an experimental test of the two-story structure with an active mass damper (AMD).
Project management in the Construction field inherently has more uncertainty and more risks relative to ones from other area. This is the very reason for why project management is recognized as the important task to construction companies. For getting better performance in the project management, we need a system that keeps the consistencies in a automatic or semi-automatic manner through the project management stages like as project definition stage, project planning stage, project design and implementation stage. But since the early stages such as definition and planning stages has many unstructured features and also are dependent to unique expertise or experience of a specific company, we have difficulty providing systematic support for the task of these stages. This kind of problem becomes harder to solve especially in the plant construction domain that is our target domain. Therefore, in this paper, we propose and also implement a systematic approach to resolve the problem mentioned for the early project management stages in the plant construction domain. The results of our approach can be used not only for the purpose of the early project management stages but also can be used automatically as an input to commercial project management tools for the middle project management stages. Because of doing in this way, the construction project can be consistently managed from the definition to implementation stage in a seamless manner. For achieving this purpose, we adopt knowledge based inference, CBR, and neural network as major methodologies and we also applied our approach to two real world cases, power plant and drainage treatment plant cases from a leading construction company in Korea. Since these two application cases showed us very successful results, we can say our approach was validated successfully to the plant construction area. Finally, we believe our approach will contribute to many project management problems from more broader construction area.
Transactions of the Korean Society of Mechanical Engineers B
/
v.34
no.2
/
pp.213-218
/
2010
A cooling system utilizing liquid helium to chill the cryopanel (800 mm $\times$ 700 mm dimensions) down to 4.2 K was designed, implemented, and tested to verify the role of the cryopanel as a heat sink for the payload of a spacecraft inside the large thermal vacuum chamber (effective dimensions : 8 m ($\Phi$) $\times$ 10 m (L)) of KARI (Korea Aerospace Research Institute). Two LHe (Liquid Helium) Dewars, one for the main supply and the other for refilling, were used to supply liquid helium or cold helium gas into this cryopanel, and flow control for the target temperature of the cryopanel within requirements was done through fine adjustment of the pressure inside the LHe Dewars. The return helium gas from the cryopanel was reused as a thermal barrier to minimize the heat influx on the core liquid helium supply pipe. The test verified a cooling time of around three hours from the ambient temperature to 40 K (combined standard uncertainty of 194 mK), the capacity for maintaining the cryopanel at intermediate temperatures, and a 1 K uniformity over the entire cryopanel surface at around 40 K with 20 W cooling power.
Although the development of Global Positioning System (GPS) are more and more mature, its accuracy is just acceptable for outdoor positioning, not positioning for the indoor of building and the underpass. For the positioning application area for the indoor of building and the underpass, GPS even cannot achieve that accuracy because of the construction materials while the requirement for accurate positioning in the indoor of building and the underpass, because a space, a person is necessary, may be very small space with several square meters in the indoor of building and the underpass. The Received Signal Strength (RSS) based localization is becoming a good choice especially for the indoor of building and the underpass scenarios where the WiFi signals of IEEE 802.11, Wireless LAN, are available in almost every indoor of building and the underpass. The fundamental requirement of such localization system is to estimate location from Access Point (AP) to mobile device using RSS at a specific location. The Multi-path fading effects in this process make RSS to fluctuate unpredictably, causing uncertainty in localization. To deal with this problem, the combination for the method of Neural Networks and Push-Pull Estimation is applied so that the carried along the devices can learn and make the decision of position using mobile device where it is in the indoor of building and the underpass.
Korean Journal of Construction Engineering and Management
/
v.21
no.6
/
pp.113-124
/
2020
Social movements to improve the performance of buildings through remodeling of aging apartment houses are being captured. To this end, the remodeling construction cost analysis, structural analysis, and political institutional review have been conducted to suggest ways to activate the remodeling. However, although the method of analyzing construction cost for remodeling apartment houses is currently being proposed for research purposes, there are limitations in practical application possibilities. Specifically, In order to be used practically, it is applicable to cases that have already been completed or in progress, but cases that will occur in the future are also used for construction cost analysis, so the sustainability of the analysis method is lacking. For the purpose of this, we would like to suggest an automated estimating method. For the sustainability of construction cost estimates, Deep-Learning was introduced in the estimating procedure. Specifically, a method for automatically finding the relationship between design elements, work types, and cost increase factors that can occur in apartment remodeling was presented. In addition, Monte Carlo Simulation was included in the estimation procedure to compensate for the lack of uncertainty, which is the inherent limitation of the Deep Learning-based estimation. In order to present higher accuracy as cases are accumulated, a method of calculating higher accuracy by comparing the estimate result with the existing accumulated data was also suggested. In order to validate the sustainability of the automated estimates proposed in this study, 13 cases of learning procedures and an additional 2 cases of cumulative procedures were performed. As a result, a new construction cost estimating procedure was automatically presented that reflects the characteristics of the two additional projects. In this study, the method of estimate estimate was used using 15 cases, If the cases are accumulated and reflected, the effect of this study is expected to increase.
Journal of Advanced Marine Engineering and Technology
/
v.39
no.6
/
pp.662-669
/
2015
There has been an increased interest in the mitigation of wax deposition because wax, which usually accumulates in subsea oil-production systems, interrupts stable oil production and significantly increases the cost. To guarantee a required oil flow by mitigating wax deposition, we need to obtain a reliable estimation of the wax deposition. In this research, we perform simulations to understand the major mechanisms that lead to wax deposition, namely molecular diffusion, shear stripping reduction, and aging. While the model variables (shear reduction multiplier, wax porosity, wax thermal conductivity, and molecular diffusion multiplier) can be measured experimentally, they have high uncertainty. We perform an analysis of these variables and the amount of water and gas in the multiphase flow to determine these effects on the behavior of wax deposition. Based on the results obtained during this study for a higher wax porosity and molecular diffusion multiplier, we were able to confirm the presence of thicker wax deposits. As the shear reduction multiplier decreased, the thickness of the wax deposits increased. As the amount of water increased, there was also an increase in the amount of wax deposits until 40% water cut and decreased. As the amount of gas increased, the amount of wax deposits increased because of the loss of the light hydrocarbon component in the liquid phase. The results of this study can be utilized to estimate the wax deposition behavior by comparing the experiment (or field) and simulation data.
Journal of the Korean Association of Geographic Information Studies
/
v.14
no.3
/
pp.136-149
/
2011
The aim of this study is to develop future climate scenario by downscaling the regional climate model (RCM) from global climate model (GCM) based on IPCC A1B scenario. To this end, the study first resampled the KMA-RCM(Korea meteorological administration-regional climate model) from spatial resolution of 27km to 1km. Second, observed climatic data of temperature and rainfall through 1971-2000 were processed to reflect the temperature lapse rate with respect to the altitude of each meteorological observation station. To optimize the downscaled results, Co-kriging was used to calculate temperature lapse-rate; and IDW was used to calculate rainfall lapse rate. Fourth, to verify results of the study we performed correlation analysis between future climate change projection data and observation data through the years 2001-2010. In this study the past climate data (1971-2000), future climate change scenarios(A1B), KMA-RCM(Korea meteorological administration-regional climate model) results and the 1km DEM were used. The research area is entire South Korea and the study period is from 1971 to 2100. Monthly mean temperatures and rainfall with spatial resolution of 1km * 1km were produced as a result of research. Annual average temperature and precipitation had increased by $1.39^{\circ}C$ and 271.23mm during 1971 to 2100. The development of downscaling method using GIS and verification with observed data could reduce the uncertainty of future climate change projection.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.