• Title/Summary/Keyword: system uncertainty

Search Result 2,446, Processing Time 0.033 seconds

Study on the Evaluation of Ship Collision Risk based on the Dempster-Shafer Theory (Dempster-Shafer 이론 기반의 선박충돌위험성 평가에 관한 연구)

  • Jinwan Park;Jung Sik Jeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.462-469
    • /
    • 2023
  • In this study, we propose a method for evaluating the risk of collision between ships to support determination on the risk of collision in a situation in which ships encounter each other and to prevent collision accidents. Because several uncertainties are involved in the navigation of a ship, must be considered when evaluating the risk of collision. We apply the Dempster-Shafer theory to manage this uncertainty and evaluate the collision risk of each target vessel in real time. The distance at the closest point approach (DCPA), time to the closest point approach (TCPA), distance from another vessel, relative bearing, and velocity ratio are used as evaluation factors for ship collision risk. The basic probability assignments (BPAs) calculated by membership functions for each evaluation factor are fused through the combination rule of the Dempster-Shafer theory. As a result of the experiment using automatic identification system (AIS) data collected in situations where ships actually encounter each other, the suitability of evaluation was verified. By evaluating the risk of collision in real time in encounter situations between ships, collision accidents caused by human errora can be prevented. This is expected to be used for vessel traffic service systems and collision avoidance systems for autonomous ships.

Multidimensional data generation of water distribution systems using adversarially trained autoencoder (적대적 학습 기반 오토인코더(ATAE)를 이용한 다차원 상수도관망 데이터 생성)

  • Kim, Sehyeong;Jun, Sanghoon;Jung, Donghwi
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.7
    • /
    • pp.439-449
    • /
    • 2023
  • Recent advancements in data measuring technology have facilitated the installation of various sensors, such as pressure meters and flow meters, to effectively assess the real-time conditions of water distribution systems (WDSs). However, as cities expand extensively, the factors that impact the reliability of measurements have become increasingly diverse. In particular, demand data, one of the most significant hydraulic variable in WDS, is challenging to be measured directly and is prone to missing values, making the development of accurate data generation models more important. Therefore, this paper proposes an adversarially trained autoencoder (ATAE) model based on generative deep learning techniques to accurately estimate demand data in WDSs. The proposed model utilizes two neural networks: a generative network and a discriminative network. The generative network generates demand data using the information provided from the measured pressure data, while the discriminative network evaluates the generated demand outputs and provides feedback to the generator to learn the distinctive features of the data. To validate its performance, the ATAE model is applied to a real distribution system in Austin, Texas, USA. The study analyzes the impact of data uncertainty by calculating the accuracy of ATAE's prediction results for varying levels of uncertainty in the demand and the pressure time series data. Additionally, the model's performance is evaluated by comparing the results for different data collection periods (low, average, and high demand hours) to assess its ability to generate demand data based on water consumption levels.

Benchmark Results of a Monte Carlo Treatment Planning system (몬데카를로 기반 치료계획시스템의 성능평가)

  • Cho, Byung-Chul
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.149-155
    • /
    • 2002
  • Recent advances in radiation transport algorithms, computer hardware performance, and parallel computing make the clinical use of Monte Carlo based dose calculations possible. To compare the speed and accuracies of dose calculations between different developed codes, a benchmark tests were proposed at the XIIth ICCR (International Conference on the use of Computers in Radiation Therapy, Heidelberg, Germany 2000). A Monte Carlo treatment planning comprised of 28 various Intel Pentium CPUs was implemented for routine clinical use. The purpose of this study was to evaluate the performance of our system using the above benchmark tests. The benchmark procedures are comprised of three parts. a) speed of photon beams dose calculation inside a given phantom of 30.5 cm$\times$39.5 cm $\times$ 30 cm deep and filled with 5 ㎣ voxels within 2% statistical uncertainty. b) speed of electron beams dose calculation inside the same phantom as that of the photon beams. c) accuracy of photon and electron beam calculation inside heterogeneous slab phantom compared with the reference results of EGS4/PRESTA calculation. As results of the speed benchmark tests, it took 5.5 minutes to achieve less than 2% statistical uncertainty for 18 MV photon beams. Though the net calculation for electron beams was an order of faster than the photon beam, the overall calculation time was similar to that of photon beam case due to the overhead time to maintain parallel processing. Since our Monte Carlo code is EGSnrc, which is an improved version of EGS4, the accuracy tests of our system showed, as expected, very good agreement with the reference data. In conclusion, our Monte Carlo treatment planning system shows clinically meaningful results. Though other more efficient codes are developed such like MCDOSE and VMC++, BEAMnrc based on EGSnrc code system may be used for routine clinical Monte Carlo treatment planning in conjunction with clustering technique.

  • PDF

Preliminary Analysis of the Thermal-Hydraulic Performance of a Passive Containment Cooling System using the MARS-KS1.3 Code (MARS-KS1.3을 이용한 피동원자로건물냉각계통 열수력 성능 예비분석)

  • Bae, Sung Hwan;Ha, Tae Wook;Jeong, Jae Jun;Yun, Byong Jo;Jerng, Dong Wook;Kim, Han Gon
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.96-108
    • /
    • 2015
  • A passive containment cooling system has been designed to remove the heat inside a containment during accidents without external power supply. In this work, the PCCS was introduced in the APR1400 plant to replace the containment spray system and, then, the thermal-hydraulic performance of the PCCS was analyzed using the system thermal-hydraulic computer code, MARS. A double-ended cold-leg break accident, which is known to induce the maximum pressure in the containment, is simulated, where the thermal hydraulics of the PCCS, the reactor coolant system, and the containment are simultaneously simulated. The results of the calculations showed that the PCCS can replace the existing spray system and that the containment building and its internal structure also play a very important role for the heat removal during the accident. Some sensitivity calculations were carried out to evaluate the model uncertainty and the effects of design parameters. The limitations of the PCCS are also discussed.

A Hand Gesture Recognition System using 3D Tracking Volume Restriction Technique (3차원 추적영역 제한 기법을 이용한 손 동작 인식 시스템)

  • Kim, Kyung-Ho;Jung, Da-Un;Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.201-211
    • /
    • 2013
  • In this paper, we propose a hand tracking and gesture recognition system. Our system employs a depth capture device to obtain 3D geometric information of user's bare hand. In particular, we build a flexible tracking volume and restrict the hand tracking area, so that we can avoid diverse problems caused by conventional object detection/tracking systems. The proposed system computes running average of the hand position, and tracking volume is actively adjusted according to the statistical information that is computed on the basis of uncertainty of the user's hand motion in the 3D space. Once the position of user's hand is obtained, then the system attempts to detect stretched fingers to recognize finger gesture of the user's hand. In order to test the proposed framework, we built a NUI system using the proposed technique, and verified that our system presents very stable performance even in the case that multiple objects exist simultaneously in the crowded environment, as well as in the situation that the scene is occluded temporarily. We also verified that our system ensures running speed of 24-30 frames per second throughout the experiments.

Review of the Estimation Method of Methane Emission from Waste Landfill for Korean Greenhouse Gas and Energy Target Management System (온실가스·에너지 목표관리제를 위한 폐기물 매립시설 메탄배출량의 적정 산정방법에 관한 고찰)

  • Seo, Dong-Cheon;Nah, Je-Hyun;Bae, Sung-Jin;Lee, Dong-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.867-876
    • /
    • 2013
  • To promote the carbon emission trading scheme and reduce greenhouse gas (GHG) emission as following 'Korean GHG & Energy Target Management System', GHG emissions should be accurately determined in each industrial sector. For the estimation method of GHG emission from waste landfill, there are several error parameters, therefore we reviewed the estimation method and proposed a revised method. Methane generation from landfill must be calculated by the selected method based on methane recovery rate, 0.75. However, this methodology is not considered about uncertainty factor. So it is desirable that $CH_4$ generation is estimated using first order decay model and methane recovery should use field monitoring data. If not, $CH_4$ recovery could be applied from other study results; 0.60 of operational landfill with gas vent and flaring system, 0.65 of operational site with landfill gas recovery system, 0.90 of closed landfill with final cover. Other parameters such as degradable organic carbon (DOC) and fraction of DOC decompose ($DOC_f$) need to derive the default value from studies to reflect a Korean waste status. Proper application of MCF that is selected by operation and management of landfill requires more precise criteria.

Factors affecting Pig Farmers' Adoption of the HACCP System

  • Jung, Gu-Hyun;Ahn, Kyeong Ah;Kim, Han-Eul;Jo, Hye Bin;Choe, Young-Chan
    • Agribusiness and Information Management
    • /
    • v.3 no.2
    • /
    • pp.43-62
    • /
    • 2011
  • The goal of this study is to determine, based on survey results, the underlying factors that affect the intention of the farmers who have not adopted the Hazard Analysis and Critical Control Points (HACCP) system for the rearing phase of pig production to adopt this system in the future. The research model for this study was con structed based on strategic contingency theory, the theory of the diffusion of innovation, and the technology acceptance model (TAM). Using structural equation modeling with partial least squares (PLS), this study analyzes the effects of the intensity of competition, the environmental uncertainty, the innovativeness and self-efficacy of the individual farmers, and the impact of the credibility of the Agricultural Technology Service Center (ATSC), which acts as the principal agent of technology dissemination and as a leader of change, on the perceived usefulness of technology and the farmers' intention to adopt the system. The results of the analysis are as follows. First, with regard to the underlying factors affecting the intention to adopt the new system, the intensity of competition within the industry and the institutional credibility of the ATSC were inferred to underlie the perceived usefulness. Second, institutional credibility has a positive impact on the perceived usefulness of the system, and the perceived usefulness, in turn, has a positive impact on the intention to adopt. The perceived ease of use also has a positive impact on the intention to adopt. Because the factor that has the biggest impact on the intention of a farm to adopt is the credibility of the ATSC, it is crucial for extension organizations, such as the ATSC, to make greater efforts to promote the expansion of the HACCP system. Because farmers feel that the implementation of the HACCP system is an instrumental strategy for coping with the high intensity of competition within the industry, they attempt to gain a competitive edge through the production of safe livestock products.

  • PDF

Disturbance Rejection and Attitude Control of the Unmanned Firing System of the Mobile Vehicle (이동형 차량용 무인사격시스템의 외란 제거 및 자세 제어)

  • Chang, Yu-Shin;Keh, Joong-Eup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.64-69
    • /
    • 2007
  • Motion control of the system is a position control of motor. Motion control of an uncertain robot system is considered as one of the most important and fundamental research directions in the robotics. Some distinguished works using linear control, adaptive control, robust control strategies based on computed torque methodology have been reported. However, it is generally recognized within the control community that these strategies suffer from the following problems : the exact robot dynamics are needed and hard to implement, the adaptive control cannot guarantee the performance during the transient period for adaptation under the variation, the robust control algorithms such as the sliding mode control need information on the bounds of the possible uncertainty and disturbance. And it produces a large control input as well. In this dissertation, a motion control for the unmanned intelligent robot system using disturbance observer is studied. This system is affected with an impact vibration disturbance. This paper describes a stable motion control of the system with the consideration of external disturbance. To obtain the stable motion independently against the external disturbance, the disturbance rejection is strongly required. To address the above issue, this paper presents a Disturbance OBserver(DOB) control algorithm. The validity of the suggested DOB robust control scheme is confirmed by several computer simulation results. And the experiments with a motor system is performed to give the validity of applicability in the industrial field. This results make the easier implementation of the controller possible in the field.

Development of Task Planning System for Intelligent Excavating System Applying Heuristics (휴리스틱스(Heuristics)를 활용한 지능형 굴삭 시스템의 Task Planning System 개발)

  • Lee, Seung-Soo;Kim, Jeong-Hwan;Kang, Sang-Hyeok;Seo, Jong-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.859-869
    • /
    • 2008
  • These days, almost every industry's production line has become automatic and this phenomenon brought a lot of benefits such as increase in productivity and economical effect, assurance in industrial safety, better quality and compatibility. However, unlike industrial production line, in construction industry, automation has number of barriers like uncertainty incidents and intellectual judgment to make ability to make solution out of it. Therefore construction industry is still demanding use of construction machine through labor. Due to this matter operational labor in construction industry is aging and fading. To solve these problem, in developed nations like Europe, US or Japan are keep researching for the automation in construction and road pavement, strengthening and some other simple operations have been worked through automation but in civil engineering site, automation research is still low despite of its importance in constructional site. For automating civil engineering operation, effective operational plan have to be set by analyzing ground information acquainted. If skillful worker apply heuristics, trial & error can be reduced with increased safety and the effective work plan can be established. Hence, this research will introduce Intellectual Task Planning System for Intelligent Excavating System's effective work plan and heuristics applied in each steps.

Fuzzy Optimal Reservoir Operation Considering Abnormal Flood (이상홍수를 고려한 퍼지 최적 저수지 운영)

  • Choi, Changwon;Yu, Myung Su;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.221-232
    • /
    • 2012
  • In this study, the model enhancing the safety of reservoirs and reducing the downstream flood damage by reservoirs system operation during abnormal flood was developed. Linear programming was used for the optimal reservoirs system operation during an abnormal flood and fuzzy inference system was introduced to solve the uncertainty problem which is included in hydrological factors like inflow, water level and inflow variation of reservoir operation. The linear programming model determined the optimal reservoir system operation rules and could be used in situation where water demands varies rapidly during the abnormal flood events using fuzzy control technique. In this study, the optimal reservoirs system operation for Andong and Imha reservoirs located in the upper basin of Nakdong river was performed in order that the design flood discharge at Andong city would not be exceeded for the design flood of 100 year and PMF(Probable Maximum Flood). And the model that determines the release according to the downstream flow discharge, the reservoir storage, the inflow and the inflow variation of each reservoir was developed using the optimal system operation result and fuzzy control technique. The developed model consisted of 224 fuzzy rules according to the conditions of Andong reservoir, Imha reservoir and Andong city. And the release from each reservoir could be determined when the current data are used as input data through the developed GUI.