• Title/Summary/Keyword: system uncertainty

Search Result 2,446, Processing Time 0.031 seconds

Design and Implementation of Real Time Locating System for Efficient Vehicle Pooling in Port Terminal (항만 터미널 내 차량의 효율적 풀링을 위한 실시간 위치 측정 시스템 설계 및 구현)

  • Son, Sang-Hyun;Cho, Hyun-Tae;Beak, Yun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2056-2063
    • /
    • 2012
  • In a port terminal, containers are stored and transshipped by yard tractors and crane vehicles. For operation efficiency of the terminal, location information of these vehicles is an essential factor. However, most of port terminals try to estimate location of these assets using indirect methods such as event tracking of shipping or unshipping containers. Because these kinds of events are rarely occurred, location of the event includes seriously locating error compared to a real location of vehicle. In this paper, we propose a real-time asset tracking system to obtain accurate and reliable location of terminal assets. The proposed system overcomes a location estimation error caused by container stacks which interrupt wireless communication. In order to mitigate uncertainty and increase accuracy of location estimation, we designed hardwares and multi-step locating system to resolve additional preblems. We implemented system components, and installed these at a port environment for evaluation. The result shows superiority of the system that the accuracy is approximately 5.87 meters (CEP).

Modeling of Emissions from Open Biomass Burning in Asia Using the BlueSky Framework

  • Choi, Ki-Chul;Woo, Jung-Hun;Kim, Hyeon Kook;Choi, Jieun;Eum, Jeong-Hee;Baek, Bok H.
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.25-37
    • /
    • 2013
  • Open biomass burning (excluding biofuels) is an important contributor to air pollution in the Asian region. Estimation of emissions from fires, however, has been problematic, primarily because of uncertainty in the size and location of sources and in their temporal and spatial variability. Hence, more comprehensive tools to estimate wildfire emissions and that can characterize their temporal and spatial variability are needed. Furthermore, an emission processing system that can generate speciated, gridded, and temporally allocated emissions is needed to support air-quality modeling studies over Asia. For these reasons, a biomass-burning emissions modeling system based on satellite imagery was developed to better account for the spatial and temporal distributions of emissions. The BlueSky Framework, which was developed by the USDA Forest Service and US EPA, was used to develop the Asian biomass-burning emissions modeling system. The sub-models used for this study were the Fuel Characteristic Classification System (FCCS), CONSUME, and the Emissions Production Model (EPM). Our domain covers not only Asia but also Siberia and part of central Asia to assess the large boreal fires in the region. The MODIS fire products and vegetation map were used in this study. Using the developed modeling system, biomass-burning emissions were estimated during April and July 2008, and the results were compared with previous studies. Our results show good to fair agreement with those of GFEDv3 for most regions, ranging from 9.7 % in East Asia to 52% in Siberia. The SMOKE modeling system was combined with this system to generate three-dimensional model-ready emissions employing the fire-plume rise algorithm. This study suggests a practicable and maintainable methodology for supporting Asian air-quality modeling studies and to help understand the impact of air-pollutant emissions on Asian air quality.

Regional Innovation System in France (프랑스의 지역혁신체계 발전과정과 혁신기업 창업체계)

  • Moon, Nam-Cheol
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.5
    • /
    • pp.525-536
    • /
    • 2009
  • In the period of rapid economic growth, it is possible to practice the growth policy by factors input and the regional development policy by the dispersion of growth. But, in the period of weakened growth, this model loses its theoretical and practical merit. The endogenous regional development model that can efficiently cope with a international competition and a uncertainty of international economy become an alternative policy of growth and regional development. France, which had a problem of overcrowding in the capital region by the centralized growth policy and regional development policy, phase the regional innovation system policy in order to establish the foundation of an endogenous regional development from the 1970's. The regional innovation system policy in France which pursues simultaneously the systematic regional knowledge creation and the regional development is very suggestive to the regional innovation system policy in Korea that pursues the endogenous regional development and the solution of the regional disparity.

  • PDF

Nonlinear Acceleration Controller Design for DACS Type Kill Vehicle (DACS형 직격요격비행체의 비선형 가속도 조종루프 설계)

  • Lee, Chang-Hun;Kim, Tae-Hun;Jun, Byung-Eul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.54-64
    • /
    • 2015
  • This paper deals with an acceleration controller design for a kill vehicle equipped with a divert and attitude control system (DACS). In the proposed method, the attitude control system (ACS) is used to produce the thrust command to nullify angle-of-attack. For the angle-of-attack control, a nonlinear angle-of-attack controller is proposed based on the feedback linearization methodology. Since the flight path angle is identical to the attitude angle under the condition of zero angle-of-attack, the divert control system (DCS) can directly produce the lateral acceleration which is demanded from the guidance loop. In the proposed method, we can minimize the aerodynamic uncertainty due to the propulsive force. Additionally, we can simplify the operation logic of DCS and ACS. In this paper, nonlinear simulations are performed to show the performance of the proposed method.

Analysis of Investment Time for a Residential Photovoltaic Power System in China and Thailand Applying a Real Option Model and SAM Data (Real Option 모형과 SAM데이터를 활용한 중국과 태국의 주거용 태양광 투자 시점 분석)

  • Moon, Yongma
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.2
    • /
    • pp.125-141
    • /
    • 2019
  • This paper provides economic analysis for a residential photovoltaic (PV) power system of 5 districts in China and Thailand, using SAM (System Advisor Model) data. Unlike existing literature, the analysis is conducted from the investment timing perspective, as applying to a real option model which can incorporate the cost uncertainty of the PV system and a resident's option to delay the investment. This study shows that the gap of optimal investment times between a real option model and a generally used net present value model ranges from about 6 to 14 years. Also, we found a contracting result for a particular district that, while the investment is appropriate according to the net present value model, it is more reasonable to delay the PV system investment in terms of the real option model.

Spatial Gap-Filling of Hourly AOD Data from Himawari-8 Satellite Using DCT (Discrete Cosine Transform) and FMM (Fast Marching Method)

  • Youn, Youjeong;Kim, Seoyeon;Jeong, Yemin;Cho, Subin;Kang, Jonggu;Kim, Geunah;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.777-788
    • /
    • 2021
  • Since aerosol has a relatively short duration and significant spatial variation, satellite observations become more important for the spatially and temporally continuous quantification of aerosol. However, optical remote sensing has the disadvantage that it cannot detect AOD (Aerosol Optical Depth) for the regions covered by clouds or the regions with extremely high concentrations. Such missing values can increase the data uncertainty in the analyses of the Earth's environment. This paper presents a spatial gap-filling framework using a univariate statistical method such as DCT-PLS (Discrete Cosine Transform-based Penalized Least Square Regression) and FMM (Fast Matching Method) inpainting. We conducted a feasibility test for the hourly AOD product from AHI (Advanced Himawari Imager) between January 1 and December 31, 2019, and compared the accuracy statistics of the two spatial gap-filling methods. When the null-pixel area is not very large (null-pixel ratio < 0.6), the validation statistics of DCT-PLS and FMM techniques showed high accuracy of CC=0.988 (MAE=0.020) and CC=0.980 (MAE=0.028), respectively. Together with the AI-based gap-filling method using extra explanatory variables, the DCT-PLS and FMM techniques can be tested for the low-resolution images from the AMI (Advanced Meteorological Imager) of GK2A (Geostationary Korea Multi-purpose Satellite 2A), GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI2 (Geostationary Ocean Color Imager) of GK2B (Geostationary Korea Multi-purpose Satellite 2B) and the high-resolution images from the CAS500 (Compact Advanced Satellite) series soon.

Analysis of Guidance Laws for Impact Angle Control Mission of Cooperative Missiles Based on Communication Structure (협업 유도탄 간 상대 충돌 각 제어 임무에서 통신 구조에 따른 유도기법의 영향 분석)

  • Hyosang Ko;Danil Lee;Myunghwa Lee;Hanlim Choi
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • This paper applies a relative impact angle control guidance law to a communication-based multi-missile network system with uncertainties and disturbances. The multi-missile network system is represented as a transitive reduction directed acyclic graph. Furthermore, this paper introduces both centralized and decentralized guidance laws based on the graph's structure. The relationship between these guidance laws is analyzed by comparing them based on the communication structure and the presence of system noise. To analyze the effects of decentralized optimal cooperative guidance law, this paper assumes uncertainty in missile dynamics and predicted impact point information for the relative impact angle control mission. Monte Carlo simulations are conducted for various mission environments to analyze the impact of communication and its structure on the system.

Development of the Expert System for Diagnosing Silicone Oil-filled Transformer (실리콘 유입변압기 진단을 위한 전문가시스템 개발)

  • 문종필;김재철;임태훈
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.55-62
    • /
    • 2004
  • In this paper, the diagnostic expert system for silicone oil-filled transformer is developed using dissolved gas analysis(DGA). There are many diagnostic methods for diagnostic oil-immersed transformer. But DGA is used to the proposed expert system since it has been verified that DGA is very efficient diagnostic method for transformer. In addition, it is resonable that fuzzy rule, degree of inclusion and fuzzy measure must be considered to handle the uncertainty nature of gas boundary and rules. The proposed expert system consists of knowledge base module, inference engine module and human-machine interface(HMI) module. The knowledge base module consists of the knowledge using the rule. The inference engine module is used to the fuzzy rule. The history of the transformer gas data is managed by the database. the effect of the proposed expert system is verified by case studies.

A Study on the Robust Content-Based Musical Genre Classification System Using Multi-Feature Clustering (Multi-Feature Clustering을 이용한 강인한 내용 기반 음악 장르 분류 시스템에 관한 연구)

  • Yoon Won-Jung;Lee Kang-Kyu;Park Kyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.115-120
    • /
    • 2005
  • In this paper, we propose a new robust content-based musical genre classification algorithm using multi-feature clustering(MFC) method. In contrast to previous works, this paper focuses on two practical issues of the system dependency problem on different input query patterns(or portions) and input query lengths which causes serious uncertainty of the system performance. In order to solve these problems, a new approach called multi-feature clustering(MFC) based on k-means clustering is proposed. To verify the performance of the proposed method, several excerpts with variable duration were extracted from every other position in a queried music file. Effectiveness of the system with MFC and without MFC is compared in terms of the classification accuracy. It is demonstrated that the use of MFC significantly improves the system stability of musical genre classification performance with higher accuracy rate.

A New Robust Continuos VSCS by Saturation Function for Uncertain Nonlinear Plants (불확실 비선형 플랜트를 위한 포화 함수에 의한 새로운 강인한 연속 가변구조제어시스템)

  • Lee, Jung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.30-39
    • /
    • 2011
  • In this note, a systematic design of a new robust nonlinear continuous variable structure control system(VSCS) based on the modified state dependent nonlinear form is presented for the control of uncertain affine nonlinear systems with mismatched uncertainties and matched disturbance. After an affine uncertain nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a new robust nonlinear VSCS is presented. The uncertainty of the nonlinear system function is separated into the tow parts, i.e., state dependent term and state independent term for extension of target plants. To be linear in the closed loop resultant dynamics and in order to easily satisfy the existence condition of the sliding mode, the transformed linear sliding surface is applied. A corresponding control input is proposed to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the linear transformed sliding surface, which will be investigated in Theorem 1. For practical application, the discontinuity of the control input as the inherent property of the VSS is improved dramatically. Through a design example and simulation studies, the usefulness of the proposed controller is verified.