• Title/Summary/Keyword: system uncertainty

Search Result 2,446, Processing Time 0.028 seconds

Error propagation in 2-D self-calibration algorithm (2차원 자가 보정 알고리즘에서의 불확도 전파)

  • 유승봉;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.434-437
    • /
    • 2003
  • Evaluation or the patterning accuracy of e-beam lithography machines requires a high precision inspection system that is capable of measuring the true xy-locations of fiducial marks generated by the e-beam machine under test. Fiducial marks are fabricated on a single photo mask over the entire working area in the form of equally spaced two-dimensional grids. In performing the evaluation, the principles of self-calibration enable to determine the deviations of fiducial marks from their nominal xy-locations precisely, not being affected by the motion errors of the inspection system itself. It is. however, the fact that only repeatable motion errors can be eliminated, while random motion errors encountered in probing the locations of fiducial marks are not removed. Even worse, a random error occurring from the measurement of a single mark propagates and affects in determining locations of other marks, which phenomenon in fact limits the ultimate calibration accuracy of e-beam machines. In this paper, we describe an uncertainty analysis that has been made to investigate how random errors affect the final result of self-calibration of e-beam machines when one uses an optical inspection system equipped with high-resolution microscope objectives and a precision xy-stages. The guide of uncertainty analysis recommended by the International Organization for Standardization is faithfully followed along with necessary sensitivity analysis. The uncertainty analysis reveals that among the dominant components of the patterning accuracy of e-beam lithography, the rotationally symmetrical component is most significantly affected by random errors, whose propagation becomes more severe in a cascading manner as the number of fiducial marks increases

  • PDF

A generalized ANFIS controller for vibration mitigation of uncertain building structure

  • Javad Palizvan Zand;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.231-242
    • /
    • 2023
  • A novel combinatorial type-2 adaptive neuro-fuzzy inference system (T2-ANFIS) and robust proportional integral derivative (PID) control framework for intelligent vibration mitigation of uncertain structural system is introduced. The fuzzy logic controllers (FLCs), are designed independently of the mathematical model of the system. The type-1 FLCs, have a limited ability to reduce the effect of uncertainty, due to their fuzzy sets with a crisp degree of membership. In real applications, the consequent part of the fuzzy rules is uncertain. The type-2 FLCs, are robust to the fuzzy rules and the process parameters due to the fuzzy degree of membership functions and footprint of uncertainty (FOU). The adaptivity of the proposed method is provided with the optimum tuning of the parameters using the neural network training algorithms. In our approach, the PID control force is obtained using the generalized type-2 neuro-fuzzy in such a way that the stability and robustness of the controller are guaranteed. The robust performance and stability of the presented framework are demonstrated in a numerical study for an eleven-story seismically-excited building structure combined with an active tuned mass damper (ATMD). The results indicate that the introduced type-2 neuro-fuzzy PID control scheme is effective to attenuate plant states in the presence of the structured and unstructured uncertainties, compared to the conventional, type-1 FLC, type-2 FLC, and type-1 neuro-fuzzy PID controllers.

Uncertainty Analysis of Concrete Structures Using Modified Latin Hypercube Sampling Method

  • Yang, In-Hwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.89-95
    • /
    • 2006
  • This paper proposes a modified method of Latin Hypercube sampling to reduce the variance of statistical parameters in uncertainty analysis of concrete structures. The proposed method is a modification of Latin Hypercube sampling method. This analysis method uses specifically modified tables of random permutations of ranked numbers. In addition, the Spearman coefficient is used to make modified tables. Numerical analysis is carried out to predict the uncertainty of axial shortening in prestressed concrete bridge. Statistical parameters obtained from modified Latin Hypercube sampling method and conventional Latin Hypercube sampling method are compared and evaluated by a numeric analysis. The results show that the proposed method results in a decrease in the variance of statistical parameters. This indicates the method is efficient and effective in the uncertainty analysis of complex structural system such as prestressed concrete bridges.

ADAPTIVE BACKSTEPPING CONTROL FOR SATELLITE FORMATION FLYING WITH MASS UNCERTAINTY

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Lee, Sang-Jong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.405-414
    • /
    • 2006
  • Satellite formation flying has become a critical issue in the aerospace engineering because it is considered as an enabling technology for many space missions. Thus, many nonlinear control theories have been developed for the tracking problem of satellite formation flying, which include full-nonlinear dynamics, external disturbances and parameter uncertainty. In this study, nonlinear adaptive control law is developed using an adaptive backstepping technique to solve the relative position tracking problem of the satellite formation flying in the presence of mass uncertainty and the bounded external disturbance. Simulation studies are included to demonstrate the proposed controller performance. The proposed controller is shown to guarantee the system stability against the external bounded disturbances in the presence of mass uncertainty.

Uncertainty reaction force model of ship stern bearing based on random theory and improved transition matrix method

  • Zhang, Sheng dong;Liu, Zheng lin
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.191-201
    • /
    • 2016
  • Stern bearing is a key component of marine propulsion plant. Its environment is diverse, working condition changeable, and condition severe, so that stern bearing load is of strong time variability, which directly affects the safety and reliability of the system and the normal navigation of ships. In this paper, three affecting factors of the stern bearing load such as hull deformation, propeller hydrodynamic vertical force and bearing wear are calculated and characterized by random theory. The uncertainty mathematical model of stern bearing load is established to research the relationships between factors and uncertainty load of stern bearing. The validity of calculation mathematical model and results is verified by examples and experiment yet. Therefore, the research on the uncertainty load of stern bearing has important theoretical significance and engineering practical value.

Perceived Uncertainty and Perceived Usefulness of Intranet in the Restaurant Franchise Industry

  • Lee, Hwan-Eui;Cho, Sun-Gu;Hyun, Sung-Hyup
    • Journal of Distribution Science
    • /
    • v.9 no.2
    • /
    • pp.123-129
    • /
    • 2011
  • The restaurant franchise industry is one that could benefit significantly from the use of intranet technology, from its potential for improving communications between franchisors and franchisees, to providing easier inventory and ordering processes. However, there is a level of trepidation among potential users about whether the technology would improve their work performance. This study sought to examine the relationships between perceived uncertainty and perceived usefulness of intranet technology in the restaurant franchise industry. Through a review of available literature, 10 sub-dimensions of perceived uncertainty (Duncan, 1972) and six sub-dimensions of perceived usefulness (Davis, 1989) were derived. Canonical correlation analysis was used to examine the relationships between these concepts using data collected from 163 franchising restaurant managers in South Korea. Findings from the data analysis demonstrates two negative factors and one positive factor in perceived uncertainty that influence perceived usefulness, thus offering some implications of what to consider when implementing an intranet system in a restaurant franchise.

  • PDF

Performance bounds of optimal FIR filter-under modeling uncertainty (모델 불확실성에 대한 초적 FIR 필터의 성능한계)

  • 유경상;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.64-69
    • /
    • 1993
  • In this paper we present the performance bounds of the optimal FIR filter in continuous time systems with modeling uncertainty. The performance measure bounds are calculated from the estimation error covariance bounds of the optimal FIR filter and the suboptimal FIR filter. Performance error bounds range are expressed by the upper bounds on the estimation error covariance difference between the real and nominal values in case of the systems with noise uncertainty or model uncertainty. The performance bounds of the systems are derived on the assumption that the system uncertainty and the estimation error covariance are imperfectly known a priori. The estimation error bounds of the optimal FIR filter is compared with those of the Kalman filter via a numerical example applied to the estimation of the motion of an aircraft carrier at sea, which shows the former has better performances than the latter.

  • PDF

User Perceptions of Uncertainty in the Evaluation of Search Results

  • Kim, Yang-Woo
    • International Journal of Contents
    • /
    • v.8 no.1
    • /
    • pp.100-107
    • /
    • 2012
  • While considerable research suggests that users' uncertainty gradually decreases, as they proceed through the information seeking process, others argue that it can arise at any stage of their information seeking process. Reflecting the latter view, this study examined user perceptions of uncertainty in the final stage of users' information seeking process, the stage of search results evaluation. Considering the significance of Web search engines for academic study, this study investigated the relevance decision stage of scholarly researchers in the field of science, who use Web search engines for their academic study. Based on the analysis of the users' uncertainty, this study provided implications to improve information systems and Web contents design.

Stability Bounds of Time-Varying Uncertainty and Delay Time for Discrete Systems with Time-Varying Delayed State (시변 시간지연을 갖는 이산시스템의 시변 불확실성의 안정 범위)

  • Han, Hyung-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.895-901
    • /
    • 2012
  • The stability robustness problem of linear discrete systems with time-varying unstructured uncertainty of delayed states with time-varying delay time is considered. The proposed conditions for stability can be used for finding allowable bounds of timevarying uncertainty and delay time, which are solved by using LMI (Linear Matrix Inequality) and GEVP (Generalized Eigenvalue Problem) known as powerful computational methods. Furthermore, the conditions can imply the several previous results on the uncertainty bounds of time-invariant delayed states. Numerical examples are given to show the effectiveness of the proposed algorithms.

An Economic Evaluation by a Scoring Model in the Nuclear Power Plants under Uncertainty (원전에서 점수산정모형에 의한 경제성 평가)

  • 강영식;함효준
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.311-322
    • /
    • 1999
  • Major problems involved in an electrical utility expansion planning within a time horizon are how to efficiently deal with objectives considering multiple factors and uncertainty. But justification factors in study these days have considered only quantitative factors except qualitative factors. Therefore, the purpose of this paper is to develop a new model for economic evaluation of nuclear power plants through the scoring model with the quantitative and qualitative factors under uncertainty. The quantitative factors use a levelized generation cost method considering time value of money. Especially, the environmental, risk, and safety factors in this paper have been also explained for the rational economic justification of the qualitative factors under uncertainty. This paper not only proposes a new approach method using the scoring model in evaluating economy of the nuclear power plant in the long term, but also provides the more efficient decision making criterion for nuclear power plants under uncertainty.

  • PDF