• Title/Summary/Keyword: system uncertainty

Search Result 2,446, Processing Time 0.026 seconds

On Renewable Energy Technology Valuation Using System Dynamics and Compound Real Options (시스템다이내믹스와 복합 리얼옵션 기반 신·재생에너지 기술가치평가)

  • Jeon, Chanwoong;Shin, Juneseuk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.2
    • /
    • pp.195-204
    • /
    • 2014
  • The transition from fossil to renewable energy is inevitable due to fossil depletion. So, Renewable energy is very important for energy security and economic growth although it's R&D is long-term and high risky project. We propose new valuation method which combined system dynamics and compound real option method for long-term and high risk projects such as renewable energy. This method can show dynamic valuation results for the complex causal interaction and be easy for Monte-Carlo simulation to estimate volatility. And it can reflect the value of flexible decision for uncertainty. We applied the empirical analysis for Korea's photovoltaic industry by using this method. As results by empirical analysis, photovoltaic's R&D has high valuation using this method compared by traditional valuation methods such as DCF.

Adaptive Control of Uncertain Systems without Knowing Perfect Uncertainty Bounds (불확실한 시스템의적응제어)

  • Hong-Seok Kim;Chong-Ho Choi
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.905-912
    • /
    • 1989
  • An adaptive control scheme is presented for uncertain systems whose uncertainties are upper-bounded by a linear combination of unknown constants and known continuous functions. The state of the closed-loop system is proven to be ultimately bounded. The proposed method modifies the method of Corless and Leitmann in the following two respects. First, the linear region of the saturation function in controller is fixed. Second, the intergration from in parameter estimator is replaced by a low pass filter form. These modifications prevent performance degradation and destabilization of the control system more effectively. The norm of the system states can be made sufficiently small by an appropriate choice of design parameters in the control law. The applicability of the proposed scheme is demonstrated in the position control of a simple pendulum via simulation.

Reduced-order $H_{\infty}$ controller Design of Drum-type boiler system (드럼형 보일러 시스템의 저차 $H_{\infty}$ 제어기 설계)

  • Choi, S.C.;Jo, C.H.;Seo, Jin.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.366-369
    • /
    • 1994
  • In this paper, reduced-order $H_{\infty}$ robust controller is designed for the drum-type boiler system. From the known nonlinear dynamic model, a linearized multivariable model is obtained. To reduce order of robust controller, observer-based proper $H_{\infty}$ compensator is designed. The designed controller has robust property against the influence of sensor noise, system parameter variation and model uncertainty. A good Performance of the designed controller is shown by simulation.

  • PDF

Design of a Robust Stable Flux Observer for Induction Motors

  • Huh, Sung-Hoi;Seo, Sam-Jun;Choy, Ick;Park, Gwi-Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.280-285
    • /
    • 2007
  • This paper presents a robustly adaptive flux observer for speed-sensorless induction motor control. The proposed approach employs additional robustifying signals to cope with the parametric uncertainties instead of designing an estimator, which has been normally used in power electronic drives. For that, the sliding-mode like adaptive controls are designed and their gain parameters are determined so that the observer dynamics are stable in the sense of Lyapunov, and furthermore they can guarantee the robustness against parametric uncertainties in induction motor systems. Estimated rotor speed is to be used to generate feedback control signal for the speed sensorless vector control system. To show the validity and efficiency of the proposed system, simulation results are presented.

Optimal Transmission Expansion Planning Considering the Uncertainties of Power Market (전력시장 불확실성을 고려한 최적 송전시스템 확장계획)

  • Son, Min-Kyun;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.560-566
    • /
    • 2008
  • Today, as the power trades between generation companies and power customer are liberalized, the uncertainty level of operated power system is rapidly increased. Therefore, transmission operators as decision makers for transmission expansion are required to establish a deliberate investment plan for effective operations of transmission facilities considering forecasted conditions of power system. This paper proposes the methodology for the optimal solution of transmission expansion in deregulated power system. The paper obtains the expected value of transmission congestion cost for various scenarios by using occurrence probability. In addition, the paper assumes that increasing rates of loads are the probability distribution and indicates the location of expanded transmission line, the time for transmission expansion with the minimum cost for the future by performing the Montecarlo simulation. To minimize the investment risk as the variance of the congestion cost, Mean-Variance Markowitz portfolio theory is applied to the optimization model by the penalty factor of the variance. By the case study, the optimal solution for transmission expansion plan considering the feature of market participants is obtained.

Efficiency and Fairness in Information System Chargeback (정보시스템 Chargeback에 있어서의 효율성과 공평성의 관계)

  • Yu, Yeong-Jin;An, Jung-Ho
    • Asia pacific journal of information systems
    • /
    • v.1 no.1
    • /
    • pp.117-145
    • /
    • 1991
  • IS changeback is regarded as an offective way to control the usage of computers and communication systems which are very much limited resources and whose costs are very high, In this paper, the problem of combining the optimal chargeback system which guarantees the efficiency with the Rawls'(1971) concept of fairness. Primary conclusion of this paper is that if the value function which represents the contributions of IS user to the firm's profit is evidit and there is no uncertainty about this contribution information, optimality can be achived without any loss of fairness using full cost allocation pricing. But if there is no significant differences among contribution of each user and there is no significant differences among users because of the managerial arbitrariness, From this point of view contingent chargeback system with which manager can find the golden middle between optimality and fairness by adjusting the 'efficiency coefficient' according to his/her organizational characterisics and environments is proposed. A heuristic of finding the appropriate efficiency coefficient is also suggested.

  • PDF

Creation of System Dynamics in an Uncertain and Complex Market: The Case of Korea's Evolving Biopharmaceutical Industry

  • Lee, Jeong Hyop;Kim, Jaewon;Hyeon, Byung-Hwan
    • Asian Journal of Innovation and Policy
    • /
    • v.8 no.2
    • /
    • pp.180-207
    • /
    • 2019
  • This article explores the historical evolutionary process of the biopharmaceutical industry of Korea, and how intentional and unintentional policy interventions have triggered the creation of the industry's system dynamics and paved the way for the generation of a few global leading products, including biosimilar, as well as next-generation therapeutics of gene and cell. The policies cover the simple technology transfer of API synthesis to overcome the endemic parasitic disease, new substance patent adoption and new drug development consortia, human resource development, various national initiatives influenced by the Human Genome Project, and venture promotion schemes. The scope and implementation tools under these policies have been aligned and refined to transform traditional fine chemical-based pharmaceuticals, to stimulate large companies' participation and to create technology-based venture companies in the biopharma business of Korea.

A Study on the Point Placement Task of Robot System Based on the Vision System (비젼시스템을 이용한 로봇시스템의 점배치실험에 관한 연구)

  • Jang, Wan-Shik;You, Chang-gyou
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.175-183
    • /
    • 1996
  • This paper presents three-dimensional robot task using the vision control method. A minimum of two cameras is required to place points on end dffectors of n degree-of-freedom manipulators relative to other bodies. This is accomplished using a sequential estimation scheme that permits placement of these points in each of the two-dimensional image planes of monitoring cameras. Estimation model is developed based on a model that generalizes known three-axis manipulator kinematics to accommodate unknown relative camera position and orientation, etc. This model uses six uncertainty-of-view parameters estimated by the iteration method.

  • PDF

Robust Backstepping Control for Nonvanishing Parametrization$^1$

  • Shim, Hyung-Bo;Son, Young-Ik;Lee, Sang-Hyuk;Seo, Jin-Heon
    • Journal of KIEE
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2000
  • In this paper, a design method of a controller is presented for a class of nonlinear systems which have time-varying parametric uncertainly. Some features of this controller are that it can tackle 1) nonlinear parametrization(i.e. uncertain parameters enter the system in the nonlinear form) and 2) nonvanishing peturbation (i.e. uncertainty need not vanish at the origin). The class of systems considered in this paper has the triangular structure for which the well-known backstepping design can be applied. The uncertain parameter is assumed to be contained in the bounded set whose size can be arbitrarily large. Also, the uncertain system are globally uniformly bounded and converge to a compact set whose size is designable. In particular, the first state of the system can be made arbitrarily small, which can be seen by the presented simulation result.

  • PDF

Smart modified repetitive-control design for nonlinear structure with tuned mass damper

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.107-114
    • /
    • 2023
  • A new intelligent adaptive control scheme was proposed that combines observer disturbance-based adaptive control and fuzzy adaptive control for a composite structure with a mass-adjustable damper. The most important advantage is that the control structures do not need to know the uncertainty limits and the interference effect is eliminated. Three adjustable parameters in LMI are used to control the gain of the 2D fuzzy control. Binary performance indices with weighted matrices are constructed to separately evaluate validation and training performance using the revalidation learning function. Determining the appropriate weight matrix balances control and learning efficiency and prevents large gains in control. It is proved that the stability of the control system can be ensured by a linear matrix theory of equality based on Lyapunov's theory. Simulation results show that the multilevel simulation approach combines accuracy with high computational efficiency. The M-TMD system, by slightly reducing critical joint load amplitudes, can significantly improve the overall response of an uncontrolled structure.