• 제목/요약/키워드: system resistance

Search Result 4,868, Processing Time 0.027 seconds

Separation and Quantification of Parasitic Resistance in Nano-scale Silicon MOSFET

  • Lee Jun-Ha;Lee Hoong-Joo;Song Young-Jin;Yoon Young-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.2
    • /
    • pp.49-53
    • /
    • 2005
  • The current drive in a MOSFET is limited by the intrinsic channel resistance. All other parasitic elements in a device structure perform significant functions leading to degradation in the device performance. These other resistances must be less than 10$\%$-20$\%$ of the channel resistance. To meet the necessary requirements, the methodology of separation and quantification of those resistances should be investigated. In this paper, we developed an extraction method for the resistances using calibrated TCAD simulation. The resistance of the extension region is also partially determined by the formation of a surface accumulation region that gathers below the gate in the tail region of the extension profile. This resistance is strongly affected by the abruptness of the extension profile because the steeper the profile is, the shorter this accumulation region will be.

Application of Low Voltage High Resistance Grounding in Nuclear Power Plants

  • Chang, Choong-Koo;Hassan, Mostafa Ahmed Fouad
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.211-217
    • /
    • 2016
  • Most nuclear power plants now utilize solid grounded low voltage systems. For safety and reliability reasons, the low voltage (LV) high resistance grounding (HRG) system is also increasingly used in the pulp and paper, petroleum and chemical, and semiconductor industries. Fault detection is easiest and fastest with a solidly grounded system. However, a solidly grounded system has many limitations such as severe fault damage, poor reliability on essential circuits, and electrical noise caused by the high magnitude of ground fault currents. This paper will briefly address the strengths and weaknesses of LV grounding systems. An example of a low voltage HRG system in the LV system of a nuclear power plant will be presented. The HRG system is highly recommended for LV systems of nuclear power plants if sufficient considerations are provided to prevent nuisance tripping of ground fault relays and to avoid the deterioration of system reliability.

Development of Contaminant Leakage Detection System Using Electrical Resistance Measurement: ll. Evaluation of Applicability for Landfill Site by Field Model Tests (전기저항 측정기법을 이용한 오염물질 누출감지시스템의 개발: II. 현장모형시험을 통한 매립지에의 적용성 평가)

  • 오명학;이주형;박준범;김형석;강우식
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.225-233
    • /
    • 2001
  • Field model tests were performed to develop the grid-net landfill leachate leakage detection system using electrical resistance. Electric circuit tests were also carried out to investigate the expected electrical effects of grid-net electric circuit. The resistance of leaking point showed lower value than that of non leaking point. Grid-net leakage detection system was thought to be effective to locate the leachate leaking point. The measured electrical resistance along the wire including the leaking point was slightly reduced following the reduction of electrical resistance at the leaking point, which was explained by electric circuit test results.

  • PDF

Research on Standards for Protection against Electric Shock in Global Technical Regulations of Fuel Cell Vehicle (연료전지 자동차 세계기술규정의 감전보호기준 연구)

  • HwangBo, Cheon;Lee, Kyu-Myong;You, Kyeong-Jun
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.3
    • /
    • pp.167-183
    • /
    • 2010
  • This paper analyzes the backgrounds of the standards for protection against electric shock in Global Technical Regulations (GTR) of Fuel Cell Vehicle (FCV). Targets on research were high voltage criteria, safety current, isolation and grounding resistance, time limitation, energy, adequate clearance, and test procedure. Based on human impedance and effect of current in IEC 60479-1, safety of human was examined. Then, isolation and grounding circuit model of FCV were analyzed theoretically. The results give several suggestions: touch voltage less than 25V, AC energy less than 0.0813J, separation considering middle finger length, grounding resistance less than $0.2\Omega$, maximum AC ground voltage of 1V (rms), and isolation resistance between earth and electrical chassis. In MATLAB/Simulink environment, error characteristics of isolation resistance measurement procedure using internal DC sources were analyzed under variations of internal resistance of voltmeter and isolation resistance.

A Study on the Acupuncture Point Resistance Characteristics(II) (경혈 저항특성에 관한 연구(II))

  • Kim, E.S.;Han, S.C.;Choi, T.J.;Kim, J.K.;Hur, Woong;Park, Y.B.
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.69-72
    • /
    • 2001
  • In this paper, we study about a acupuncture point and a non-acupuncture point resistance characteristics for acupuncture research. For this study, we devised resistance variation measurement system. This system is consist of 4-channel skin resistance measuring parts, filters, 12bit A/D convertor, 8051 micro-controller, and personal computer The developed system insert a low current to skin and obtains voltages from standard resistor that is convected to measurement circuit in series. The obtained voltage is converted to 12bit digital signal. Therefore the converted signal is changed to skin resistance by calculation in the personal computer. As the results of experiment, the resistance of acupuncture point and non-acupuncture point are different from each other. The acupuncture point has very fast current flows than the other non- acupuncture point.

  • PDF

Evaluation of Ground Effective Thermal Properties and Effect of Borehole Thermal Resistance on Performance of Ground Heat Exchanger (지중 유효 열물성 산정 및 지중열교환기 성능에 대한 보어홀 열저항의 영향)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.4
    • /
    • pp.32-40
    • /
    • 2012
  • Geothermal heat pump(GHP) systems use vertical borehole heat exchangers to transfer heat to and from the surrounding ground via a heat carrier fluid that circulates between the borehole and the heat pump. An Important feature associated with design parameters and system performance is the local thermal resistances between the heat carrier flow channels in the borehole and the surrounding ground. This paper deals with the in-situ experimental determination of the effective thermal properties of the ground. The recorded thermal responses together with the line-source theory are used to determine the thermal conductivity and thermal diffusivity, and the steady-state borehole thermal resistance. In addition, this paper compares the experimental borehole resistance with the results from the different empirical and theoretical relations to evaluate this resistance. Further, the performance simulation of a GHP system with vertical borehole heat exchangers was conducted to analyze the effect of the borehole thermal resistance on the system performance.

Experimental investigations on the resistance performance of a high-speed partial air cushion supported catamaran

  • Yang, Jinglei;Lin, Zhuang;Li, Ping;Guo, Zhiqun;Sun, Hanbing;Yang, Dongmei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.38-47
    • /
    • 2020
  • The partial air cushion supported catamaran (PACSCAT) is a novel Surface Effect Ship (SES) and possesses distinctive resistance performance due to the presence of planing bottom. In this paper, the design of PACSCAT and air cushion system are described in detail. Model tests were carried out for Froude numbers ranging from 0.1 to 1.11, the focus is on the influence of air cushion system on resistance characteristics. Drag-reducing effect of air cushion system was proved by means of contrast tests in cuhionborne and non-cushionborne mode. Wave-making characteristics reflect that the PACSCAT would eventually enter planing regime, in which the air could just escape under the seals and the hull body could operate in a steady state. To acquire different air cushion pressure, air flow rate and leakage height were adjusted during tests. Experimental results show that the resistance performance in planing regime would decrease evidently as the increased air flow rate, however, the scheme with medium leakage height presents the best resistance performance in the hump region.

Detection of Rifampicin- and Isoniazid-Resistant Mycobacterium tuberculosis Using the Quantamatrix Multiplexed Assay Platform System

  • Wang, Hye-young;Uh, Young;Kim, Seoyong;Cho, Eunjin;Lee, Jong Seok;Lee, Hyeyoung
    • Annals of Laboratory Medicine
    • /
    • v.38 no.6
    • /
    • pp.569-577
    • /
    • 2018
  • Background: The increasing prevalence of drug-resistant tuberculosis (TB) infection represents a global public health emergency. We evaluated the usefulness of a newly developed multiplexed, bead-based bioassay (Quantamatrix Multiplexed Assay Platform [QMAP], QuantaMatrix, Seoul, Korea) to rapidly identify the Mycobacterium tuberculosis complex (MTBC) and detect rifampicin (RIF) and isoniazid (INH) resistance-associated mutations. Methods: A total of 200 clinical isolates from respiratory samples were used. Phenotypic anti-TB drug susceptibility testing (DST) results were compared with those of the QMAP system, reverse blot hybridization (REBA) MTB-MDR assay, and gene sequencing analysis. Results: Compared with the phenotypic DST results, the sensitivity and specificity of the QMAP system were 96.4% (106/110; 95% confidence interval [CI] 0.9072-0.9888) and 80.0% (72/90; 95% CI 0.7052-0.8705), respectively, for RIF resistance and 75.0% (108/144; 95% CI 0.6731-0.8139) and 96.4% (54/56; 95% CI 0.8718-0.9972), respectively, for INH resistance. The agreement rates between the QMAP system and REBA MTB-MDR assay for RIF and INH resistance detection were 97.6% (121/124; 95% CI 0.9282-0.9949) and 99.1% (109/110; 95% CI 0.9453-1.0000), respectively. Comparison between the QMAP system and gene sequencing analysis showed an overall agreement of 100% for RIF resistance (110/110; 95% CI 0.9711-1.0000) and INH resistance (124/124; 95% CI 0.9743-1.0000). Conclusions: The QMAP system may serve as a useful screening method for identifying and accurately discriminating MTBC from non-tuberculous mycobacteria, as well as determining RIF- and INH-resistant MTB strains.

A Study on the Improved Load Sharing rate in Paralleled Operated Lead Acid Battery by Using Microprocessor (마이크로 프로세서를 이용한 축전지의 병렬 운전 부하분담률 개선에 관한 연구)

  • 이정민
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.493-497
    • /
    • 2000
  • A battery is the device that transforms the chemical energy into the direct-current electrical energy without a mechanical process. Unit cells are connected in series to obtain the required voltage while being connected in parallel to organize capacity for load current. Because the voltage drop down in one set of battery is faster than in two one it may result in the low efficiency of power converter with the voltage drop and cause the system shutdown. However when the system being shutdown. However when the system being driven in parallel a circular-current can be generated,. It is shown that as a result the new batteries are heated by over-charge and over-discharge and the over charge current increases rust of the positive grid and consequently shortens the lifetime of the new batteries. The difference between the new batteries and old ones is the amount of internal resistance. In this paper we can detect the unbalance current using the microprocessor and achieve the balance current by adjusting resistance of each set, The internal resistance of each set becomes constant and the current of charge and discharge comes to be balanced by inserting the external resistance into the system and calculating the change of internal resistance.

  • PDF

Fuzzy Logic Slip Control of Torque Converter Clutch System for Passenger Car Considering Road Grade Resistance (노면 경사부하를 고려한 승용차용 토크컨버터 클러치 시스템의 퍼지 슬립 제어)

  • Han, Jin-O;Sin, Byeong-Gwan;Jo, Han-Sang;Lee, Gyo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.718-727
    • /
    • 2000
  • Nowadays, most passenger cars equipped with automatic transmissions use torque converter clutches to reduce fuel consumption, and recently the slip control scheme of torque converter clutches is widely studied for the expansion of the operating region of torque converter clutches and thus for the further improvement of the fuel economy of vehicles. In this study, the analysis of the torque converter clutch system including the line pressure control unit of the automatic transmission and the actuating hydraulic control unit of the torque converter clutch is performed, and a feedforward controller and a fuzzy logic controller for its slip control are proposed. Also, for the slip controller to use the grade resistance information during control, an observer-based grade resistance estimator is designed. The performance of the designed grade resistance estimator and the slip controller is verified by dynamic simulations, and the effect of the torque converter clutch slip control on the fuel economy is examined using a driving cycle simulation.