• Title/Summary/Keyword: system of radiological protection

Search Result 85, Processing Time 0.023 seconds

Development of the ZnS(Ag)/BC-408 phoswich detector for monitoring radioactive contamination inside pipes (배관 내부 방사능 오염도 측정용 ZnS(Ag)/BC-408 phoswich 검출기 개발)

  • Kim, Gye-Hong;Park, Chan-Hee;Jung, Chong-Hun;Lee, Kune-Woo;Seo, Bum-Kyoung
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.3
    • /
    • pp.123-128
    • /
    • 2006
  • A small radiation detection system is necessary for the direct characterization of alpha/beta-ray contamination inside pipes generated during the decommission of a nuclear facility. In this work, the new type phoswich detector consisting of the ZnS(Ag) and plastic scintillator for ${\alpha}/{\beta}$ simultaneous counting was designed as part of a development of a equipment capable of monitoring radiological contamination inside pipes. The optimum counting conditions in dimensions of scintillator and a detection system were experimentally confirmed and a performance of alpha/beta-ray discrimination was evaluated. As a result, optimum conditions of a detector suitable for monitoring radiological contamination inside pipes and a feasibility of application to pipe-inside were confirmed.

Uncertainty and Sensitivity Analysis on A Biosphere Model

  • Park, Wan-Sou;Kim, Tae-Woon;Lee, Kun-Jai
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.101-112
    • /
    • 1990
  • For the performance assessment of the radioactive waste disposal system (repository), a biosphere model is suggested. This biosphere model is intended to calculate the annual doses to man caused by the contaminated river water for eight pathways and four radionuclides. This model can also be applied to assess the radiological effects of contaminated well water. To account for the uncertainties on the model parameter values, parameter distributions are assigned to these model parameters. Then, Monte Carlo simulation method with Latin Hypercube sampling technique is used. Also, sensitivity analysis is performed by using the Spearman rank correlation coefficients. It is found that these methods are a very useful tool to treat uncertainties and sensitivities on the model parameter values and to analyze the biosphere model. A conversion factor is proposed to calculate the annual dose rate to humans arising from a unit radionuclide concentration in river water. This conversion factor allows for the substitution of the biosphere model in a probabilistic performance assessment computer code by one single variable.

  • PDF

The Effect of Electromagnetic Fields Shielding on Electromagnetic Fields Decrease in P. T Room (차폐천이 물리치료실 환경내 전자기장 감소에 미치는 효과)

  • Lim Chang-Hun;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.12 no.2
    • /
    • pp.69-82
    • /
    • 2000
  • Physical therapists are exposured to radio-and microwave-frequency electromagnetic radiation by operating electrotherapy units. So there is few protection system in physical therapy room. Clinical pathology room and so on where various kins of electromagnetic instruments is used in hospital while protection failities like protection wall or protection glass is being used only in radiological room to reduce the damage of radiation. Acoording to Larsen's survey on female physical therapist in denmark. it was said that the percentage of congenital malfornation was $3.6\%$ and cadiac malformation made up $0.7\%$. It is likely that effect of electromagnetic fields on the result cannot be ruled out. Rita ouellet-Hellstron and Walter F. Steward insisted that the danger of abortion increase in the case of pregnant femeal physical therapist exposured to microwave diathermy. The intention of our study is arousing the necessity of microwave protection in P.T room and finding the proper method for physical therapist safe. The results of this study were as follows: 1. Each electrotherapy units are occurrenced the electromagnetic fields, and specially amply occurrenced in H.P,I.C.T 2 unit operating, M.W.D unit head on parallel, S.W.D unit head on parallel. all electrotherapy units are operating. 2. There were electric fields mount are consideration to species of electrotherapy units(p<.05). 3. There were magnetic fields mount are consideration to species of electrotherapy units(p<.05). 4. There were electric fields mount are consideration to distance of electrotherapy units(p<.05). 7. There were magnetic fields mount are consideration nut to distance of electrotherapy units(p>.05). 8. Before and after protection on magnetic fields mount are consideration to all distance(0m, 0.3m, 1m, 3m, 5m)(p<.05) 9. Before and after protection on electric fields mount are consideration to 0m, 1m, 3m distance(p<.05), and consideration not to 0.3m, 5m distance(p>.05) 10. After protection fellow the each electrotherapy units. distance, intencity to electromagnetic fields are reduced(p<.05).

  • PDF

Development of a Computer Code for Low-and Intermediate-Level Radioactive Waste Disposal Safety Assessment

  • Park, J.W.;Kim, C.L.;Lee, E.Y.;Lee, Y.M.;Kang, C.H.;Zhou, W.;Kozak, M.W.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.41-48
    • /
    • 2004
  • A safety assessment code, called SAGE (Safety Assessment Groundwater Evaluation), has been developed to describe post-closure radionuclide releases and potential radiological doses for low- and intermediate-level radioactive waste (LILW) disposal in an engineered vault facility in Korea. The conceptual model implemented in the code is focused on the release of radionuclide from a gradually degrading engineered barrier system to an underlying unsaturated zone, thence to a saturated groundwater zone. The radionuclide transport equations are solved by spatially discretizing the disposal system into a series of compartments. Mass transfer between compartments is by diffusion/dispersion and advection. In all compartments, radionuclides ate decayed either as a single-member chain or as multi-member chains. The biosphere is represented as a set of steady-state, radionuclide-specific pathway dose conversion factors that are multiplied by the appropriate release rate from the far field for each pathway. The code has the capability to treat input parameters either deterministically or probabilistically. Parameter input is achieved through a user-friendly Graphical User Interface. An application is presented, which is compared against safety assessment results from the other computer codes, to benchmark the reliability of system-level conceptual modeling of the code.

ANALYSIS BY SYNTHESIS FOR ESTIMATION OF DOSE CALCULATION WITH gMOCREN AND GEANT4 IN MEDICAL IMAGE

  • Lee, Jeong-Ok;Kang, Jeong-Ku;Kim, Jhin-Kee;Kim, Bu-Gil;Jeong, Dong-Hyeok
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.146-148
    • /
    • 2012
  • The use of GEANT4 simulation toolkit has increased in the radiation medical field for the design of treatment system and the calibration or validation of treatment plans. Moreover, it is used especially on calculating dose simulation using medical data for radiation therapy. However, using internal visualization tool of GEANT4 detector constructions on expressing dose result has deficiencies because it cannot display isodose line. No one has attempted to use this code to a real patient's data. Therefore, to complement this problem, using the result of gMocren that is a three-dimensional volume-visualizing tool, we tried to display a simulated dose distribution and isodose line on medical image. In addition, we have compared cross-validation on the result of gMocren and GEANT4 simulation with commercial radiation treatment planning system. We have extracted the analyzed data of dose distribution, using real patient's medical image data with a program based on Monte Carlo simulation and visualization tool for radiation isodose mapping.

Effects of Low-Dose Fractionated Total Body Irradiation on Murine Immune System (마우스에서 전신 저선량 분할 방사선 조사에 의한 면역학적 변화 평가)

  • Kim, Mi-Hyoung;Rhu, Sang-Young;Lim, Dae-Seog;Song, Jie-Young
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.3
    • /
    • pp.134-141
    • /
    • 2014
  • Along with the wide use of radiotherapy in cancer treatment, there is growing interest in beneficial effect of low-dose irradiation (LDI) in cancer therapy. Therefore, we investigate how LDI affects immune responses in mice model. Total body irradiation (TBI) on C57BL/6 mice was given at low-dose rate of $1mGy{\cdot}min^{-1}$ using $^{137}Cs$ source at three times for consecutive three days. Hematological examination, total cell numbers of spleen, populations and characteristics of splenocytes were determined. Total numbers of RBC or platelet in irradiated mice showed no significant changes. WBC counts were decreased in a dose-dependent manner 2 days after TBI, however, these differences are gradually waned until 28 days. Dose-dependent decrease in the number of splenocytes of TBI mice at day 2 was also improved as time progressed. While the level of Foxp3 mRNA was decreased, the frequency of $CD4^+$ T cells and $CD69^+$ cells in spleen was increased at day 2 and 14. Fractionated low-dose TBI on mice exhibited normal body weight with no distinguishable behavior during whole experimental periods. These results suggest that some parameters of immune system could be altered and evaluated by fractionated low-dose TBI and be used to broaden boundary of low dose radiation research.

TA Study on Patient Exposure Dose Used the Phantom for Interventional Procedure (중재적 시술 시 팬텀을 이용한 환자의 피폭선량 분석)

  • Kang, Byung-Sam;Dong, Kyung-Rae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • Because interventional procedure operates looking at premier as real time when perate intervention enemy, by patient is revealed during suitableness time in radiation, side effect such as radiation injury of skin is apt to happen. It established by purpose of study that measure exposure dose that patient receives about these problem, and find solution for radiation injury and repletion method. In this study, we used Rando phantom of identical structure with the human body which becomes accomplished with 4 branch ingredient of the attempt and system equivalent material them and absorbed dose were measured by TLD. According to the laboratory, it shows that operations such as TFCA procedure or uterine myoma embolization are more dangerous than TACE procedure. If both operations are inspected during a short time, it is not affected in being bombed. However, it can lead to palliative agenesis or depilate, definitive agenesis only if operations are repeated more than three times. Dose distibution based on experiment, to reduce radiation exposure to patients result from reduction of scatter ray as we control field size of radiation and protection of side organs except for tumor. also we knew that we can protect patients form radiation exposure, if we increas SOD and decrease SID.

  • PDF

Inductances of a Superconducting Magnet for Cyclotron K120

  • Tang, H.M.;Kim, D.L.;Choi, Y.S.;Lee, B.S.;Yang, H.S.;Kim, Y.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.4
    • /
    • pp.29-32
    • /
    • 2008
  • The design of a superconducting magnet system producing very high magnetic field is underway at Korea Basic Science Institute (KBSI) to accelerate three kinds of carbon irons (C+2, C+4, C+6) to 120 MeV. A quarter-scaled prototype will be manufactured in order to confirm the feasibility of our design. Magnet Inductances in the system have a great influence on the current ramping rates and contribute to the stored energy, which are usually considered to be unfavorable in magnet operation. The modeling and simulation scheme of a prototype superconducting magnet for the cyclotron K120 is described in this paper. The inductances are calculated by a numerical method with and without iron yokes, respectively. These calculation results will be used as engineering design details such as a current ramping rate and a quench protection design.

Comparative Study of the Effective Dose from Panoramic Radiography in Dentistry Measured Using a Radiophotoluminescent Glass Dosimeter and an Optically Stimulated Luminescence Detector

  • Lee, Kyeong Hee;Kim, Myeong Seong;Kweon, Dae Cheol;Choi, Jiwon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1377-1384
    • /
    • 2018
  • Accurate measurement of the absorbed dose and the effective dose is required in dental panoramic radiography involving relatively low energy with a rotational X-ray tube system using long exposures. To determine the effectiveness of measuring the irradiation by using passive dosimetry, we compared the entrance skin doses by using a radiophotoluminescent glass dosimeter (RPL) and an optically stimulated luminescence detector (OSL) in a phantom model consisting of nine and 31 transverse sections. The parameters of the panoramic device were set to 80 kV, 4 mA, and 12 s in the standard program mode. The X-ray spectrum was applied in the same manner as the panoramic dose by using the SpekCalc Software. The results indicated a mass attenuation coefficient of $0.008226cm^2/g$, and an effective energy of 34 keV. The equivalent dose between the RPL and the OSL was calculated based on a product of the absorbed doses. The density of the aluminum attenuators was $2.699g/cm^3$. During the panoramic examination, tissue absorption doses with regard to the RPL were a surface dose of $75.33{\mu}Gy$ and a depth dose of $71.77{\mu}Gy$, those with regard to the OSL were surface dose of $9.2{\mu}Gy$ a depth dose of $70.39{\mu}Gy$ and a mean dose of $74.79{\mu}Gy$. The effective dose based on the International Commission on Radiological Protection Publication 103 tissue weighting factor for the RPL were $0.742{\mu}Sv$, $8.9{\mu}Sv$, $2.96{\mu}Sv$ and those for the OSL were $0.754{\mu}Sv$, $9.05{\mu}Sv$, and $3.018{\mu}Sv$ in the parotid and sublingual glands, orbit, and thyroid gland, respectively. The RPL was more effective than the OSL for measuring the absorbed radiation dose in low-energy systems with a rotational X-ray tube.

Optimization of In-vivo Monitoring Program for Radiation Emergency Response

  • Ha, Wi-Ho;Kim, Jong Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.333-338
    • /
    • 2016
  • Background: In case of radiation emergencies, internal exposure monitoring for the members of public will be required to confirm internal contamination of each individual. In-vivo monitoring technique using portable gamma spectrometer can be easily applied for internal exposure monitoring in the vicinity of the on-site area. Materials and Methods: In this study, minimum detectable doses (MDDs) for $^{134}Cs$, $^{137}Cs$, and $^{131}I$ were calculated adjusting minimum detectable activities (MDAs) from 50 to 1,000 Bq to find out the optimal in-vivo counting condition. DCAL software was used to derive retention fraction of Cs and I isotopes in the whole body and thyroid, respectively. A minimum detect-able level was determined to set committed effective dose of 0.1 mSv for emergency response. Results and Discussion: We found that MDDs at each MDA increased along with the elapsed time. 1,000 Bq for $^{134}Cs$ and $^{137}Cs$, and 100 Bq for $^{131}I$ were suggested as optimal MDAs to provide in-vivo monitoring service in case of radiation emergencies. Conclusion: In-vivo monitoring program for emergency response should be designed to achieve the optimal MDA suggested from the present work. We expect that a reduction of counting time compared with routine monitoring program can achieve the high throughput system in case of radiation emergencies.