• Title/Summary/Keyword: system hardening

Search Result 270, Processing Time 0.029 seconds

The conservation of the ancient ships salvaged in North Europe-Especially on the Conservation of the Viking ships - Especially on the Conservation of the Viking ships in Denmark (북유럽 인양목선의 보존처리-덴마아크 Viking선을 중심으로)

  • Bae, Byong-Whan
    • 보존과학연구
    • /
    • s.7
    • /
    • pp.278-291
    • /
    • 1986
  • In this report the practical case of Viking ship's conservation in Denmarke specially among the Eurpoean nations is introduced. The contents of it are summarized as follows :From 1957 to 1962 the Danish National Museum Salvaged five Viking ships from the bottom of Roskilde Fjord, Which were composed of the pieces of timber whose surface was soft because they had lain on the sea bed for about a thousand years. Excavation had been carried out in the same way as in the field by driving down a sheet piling around the wrecks and pumping the water out. These pieces of the wreck ships were packed in airtight plastic bags one by one to be transported for Brede and then immidiately had to go through the treatment for conservation. The conservation treatment process for the pieces includes three steps ; the preliminary process prior to the hardening treatment, the hardening and the assemble of the ships. In the first step ; the preliminary process, all remains of mud and shells from the fjord bed are washed off, and measuring followed ; every single piece of wreckage was drawn so that the form and size of the piece, nail holes, and breaks were registered before conservation. In the second ; the hardening treatment step, the pieces of the woreckage were filled with P.E.G. This Polyethylene Glycol method was the best to handle in the subsequent mounting of the ships in the museum. In the final, the Glycol-treated pieces were pieced together to spips with support of a system of reinforcements. They were to fit in place after corrections of the form were made several times.

  • PDF

Load capacity simulation of an agricultural gear reducer by surface heat treatment

  • Lee, Pa-Ul;Chung, Sun-Ok;Choi, Chang-Hyun;Joo, Jai-Hwang;Rhee, Joong-Yong;Choi, Young-Soo;Ha, Jong-Woo;Park, Young-Jun;Hong, Sun-Jung;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.656-664
    • /
    • 2016
  • Gear reducers are widely used for various agricultural machinery applications such as greenhouses, tractors, and agricultural vehicles. However, thermal deformation and surface pitting at gear tooth flank frequently occur in gear reducers due to high torque. Thus, surface heat treatment of gears is required to improve wear and fatigue resistance. The objective of this study was to simulate the load capacity of the agricultural gear reducer. The simulation was performed for the following three surface heat treatment methods: untreated gears, nitriding heat treatment, and induction hardening method, those mostly used for agricultural gear reducers. The load capacity of the gear reducer was simulated using the safety factor, limit bending stress, and limit contact stress of the gear. The simulation of the load capacity was conducted using KISSsoft commercial software for gear analysis. The main results of simulation test were as follows: first, the nitriding heat treatment resulted in the highest safety factor for bending stress, which was increased about 77% from those of the untreated gears. Second, the induction hardening was the highest safety factor for contact stress, which was increased about 150% from those of the untreated gears. The safety factor for contact stress of the induction hardening was increased about 64% from those of the nitriding heat treatment. The study result suggested that the surface heat treatments could enhance load capacity and that the method of surface heat treatment should be determined based on simulation results for appropriate use scenarios.

Strength and Crack-Damage Control Characteristics of Concrete Beams Layered with Strain-Hardening Cement Composites (SHCCs) (변형 경화형 시멘트 복합체로 단면 대체된 콘크리트 보의 강도 및 균열손상 제어 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Jeon, Esther;Kim, Yun-Soo;Jang, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.269-272
    • /
    • 2008
  • This paper reports on the cracking mitigation and flexural behavior experimentally observed in concrete prisms layered with strain-hardening cement composites (SHCCs) which is micro-mechanically designed cement composite and exhibits pseudo tensile strain-hardening behavior accompanied by multiple cracking while using a moderate amount of fiber, typically less than 2 percent in term of fiber volume fraction. In this study, SHCC is reinforced with 1.3 percent polyvinyl alcohol (PVA) and 0.20 percent polyethylene (PE) in volume fraction. Tests were conducted using $100{\times}100{\times}400mm$ long prisms supported over a simply supported span of 350mm. The four point load was applied using MTS servo control machine. The thickness patched with SHCC is the main variable for this study. Experimental study shows that when subject to monotonic flexural loading, the SHCC layered repair system showed 2.7 - 4.2 times increased load carrying capacity, and mitigated cracking damage of concrete beams layered with SHCC compared with plain concrete beams.

  • PDF

Fatigue Life Estimation of Induction-Hardened Drive Shaft Under Twisting Loads (비틀림 하중을 받는 고주파열처리 드라이브 차축의 피로수명 평가)

  • Kim, Tae Young;Kim, Tae An;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.567-573
    • /
    • 2017
  • The drive shaft of passenger vehicle has an important role in transmitting the torque between the power train system and the wheels. Torsional fatigue failures occur generally in the connection parts of the spline edge of the drive shaft, when there is significant fatigue damage under repeated twisting loads. A heat treatment, an induction hardening process, has been adopted to increase the torsional strength as well as the fatigue life of the drive shaft. However, it is still unclear how the extension of the induction hardening process in a used material relates to its shear-strain fatigue life range. In this study, a shear-strain controlled torsional-fatigue test with a specially designed specimen was conducted by an electro-dynamic torsional fatigue test machine. A finite element analysis of the drive shaft was carried out using the results obtained by the fatigue experiment. The estimated fatigue life was verified through a twisting load test of the real drive shaft in a test rig.

Evaluation of plastic flow curve of pure titanium sheet using hydraulic bulge test (유압벌지실험을 이용한 순 티탄늄 판재의 소성유동곡선 평가(제2보))

  • Kim, Young-Suk;Kim, Jin-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.718-725
    • /
    • 2016
  • In this study, the plastic flow curve of commercially pure titanium sheet (CP Ti) actively used in the plate heat exchanger etc., was evaluated. The plastic flow curve known as hardening curve is a key factor needed in conducting finite element analyses (FEA) for the forming process of a sheet material. A hydraulic bulge test was performed on the CP Ti sheet and the strain in this test was measured using the DIC method and ARAMIS system. The measured true stress-true strain curve from the hydraulic bulge test (HBT) was compared with that from the tensile test. The measured true stress-true strain curve from the hydraulic bulge test showed stable plastic flow curve over the strain range of 0.7 which cannot be obtained in the case of the uniaxial tensile test. The measured true stress-true strain curve from the hydraulic bulge test can be fitted well by the hardening equation known as the Kim-Tuan model.

Numerical Analysis of Flow Characteristies inside innes part of Fluid Control Valve System (유동해석을 통한 유체제어벨브 시스템의 내부 유동 특성 분석)

  • Son, Chang-Woo;Seo, Tae-Il;Kim, Kwang-Hee;Lee, Sun-Ryong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.160-166
    • /
    • 2018
  • The worldwide semi-conductor market has been growing for a long time. Manufacturing lines of semi-conductors need to handle several types of toxic gases. In particular, they need to be controlled accurately in real time. This type of toxic gas control system consists of many different kinds of parts, e.g., fittings, valves, tubes, filters, and regulators. These parts obviously need to be manufactured precisely and be corrosion resistant because they have to control high pressure gases for long periods without any leakage. For this, surface machining and hardening technologies of the metal block and metal gasket need to be studied. This type of study depends on various factors, such as geometric shapes, part materials, surface hardening method, and gas pressures. This paper presents strong concerns on a series of simulation processes regarding the differences between the inlet and outlet pressures considering several different fluid velocity, tube diameters, and V-angles. Indeed, this study will very helpful to determine the important design factors as well as precisely manufacture these parts. The EP (Electrolytic Polishing) process was used to obtain cleaner surfaces, and hardness tests were carried out after the EP process.

Analysis of Post-Weld Deformation at the Heat-Affected Zone Using External Forces Based on the Inherent Strain

  • Ha, Yun-Sok;Jang, Chang-Doo;Kim, Jong-Tae;Mun, Hyung-Suk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.56-62
    • /
    • 2007
  • An analytical method to predict the post-weld deformation at the heat-affected zone (HAZ) is presented in this paper. The method was based on the assumption that the post-weld deformation is caused by external forces resulting from the inherent strain, which is defined as the irrecoverable strain after removing structural restraints and loadings. In general, the equivalent loading method can be used to analyze distortions in welding areas because it is efficient and effective. However, if additional loads are applied after welding, it is difficult to determine the final strain on a welded structure. To determine the final strain of a welded structure at the HAZ more accurately, we developed a modified equivalent loading method based on the inherent strain that incorporated hardening effects. The proposed method was applied to calculate the residual stress at the HAZ. Experiments were also conducted on welded plates to evaluate the validity of the proposed method.

Plane-strain bending based on ideal flow theory (이상 유동 이론에서의 평면 변형 벤딩)

  • Alexandrov Sergei;Lee W.;Chung K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.233-236
    • /
    • 2004
  • The major objective of this paper is to clarify the effect of constitutive laws on bulk forming design based on the ideal flow theory. The latter theory is in general applicable for perfectly/plastic materials. However, its kinematics equations constitute a closed-form system, which are valid for any incompressible materials, therefore enabling us to extend design solutions based on the perfectly/plastic constitutive law to more realistic laws with rate sensitive hardening behavior. In the present paper, several constitutive laws commonly accepted for the modeling of cold and hot metal forming processes are considered and the effect of these laws on one particular plane-strain design is demonstrated. The closed form solution obtained describes a non-trivial nonsteady ideal process. The design solutions based on the ideal flow theory are not unique. To achieve the uniqueness, the criterion that the plastic work required to deform the initial shape of a given class of shapes into a prescribed final shape attains its minimum is adopted. Comparison with a non-ideal process is also made.

  • PDF

Hardness and Microstructures of Ti-Zr-(Cu) based Alloys for Dental Castings (치과주조용 Ti-Zr-(Cu)계 합금의 경도 및 미세조직)

  • Joo, Kyu-Ji
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.65-71
    • /
    • 2005
  • Experimental Ti-13%Zr and Ti-13%Zr-5%Cu alloys were made in an argon-arc melting furnace. The grade 2 CP Ti was used to control. The alloys were cast into phosphate bonded $SiO_2$ investment molds using an argon-arc casting machine, and The hardness and microstructures of the castings were investigated in order to reveal their possible use for new dental casting materials and to collect useful data for alloy design. The hardness of the Ti-13%Zr-5%Cu alloy(379Hv) became higher than that of Ti-13%Zr(317Hv) alloy, and the hardness of this alloys became higher than that of CP Ti(247Hv). Increasing in the hardness of the Ti-13%Zr-5%Cu alloy was considered to be solid solution hardening as the Ti-Zr system shows a completely solid solution for both high temperature $\beta$phase and low temperature $\alpha$ phase and also the inclusion of the eutectoid structure($\alpha Ti+Ti_{2}Cu$). No martensitic structures are observed in the specimen made of CP Ti, but Ti-13%Zr and Ti-13%Zr-5%Cu alloys show a kind of martensitic structure. Ti-13%Zr-5%Cu shows the finest microstructure. From these results, it was concluded that new alloys for dental casting materials should be designed as Ti-Zr-Cu based alloys.

  • PDF

Optimization of the Number of Antennas for Energy Efficiency in Massive MIMO WPCN (Massive MIMO WPCN에서 에너지 효율 향상을 위한 안테나 수 최적화 기법)

  • Han, Yonggue;Sim, Dongkyu;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.19-24
    • /
    • 2015
  • We introduce an optimization of the number of base station antennas in massive multiple-input multiple-output (MIMO) wireless powered communication network (WPCN). We use channel hardening property of massive MIMO system to approximate channel gain in terms of the number of base station antennas. Then, we find an optimal solution by partial differential and obtain a closed form solution by using Lambert-W function. The simulation results show that the approximation and the method of solving the optimization problem are reasonable, and the optimal solution of proposed scheme is almost identical to the optimal number of base station antennas by the exhaustive search method.