• Title/Summary/Keyword: system hardening

Search Result 270, Processing Time 0.032 seconds

Determination of Mechanical Properties of Galvanized Steel Sheets Using Instrumented Indentation Technique and Finite Element Analysis (계장화 압입시험 및 유한요소해석을 이용한 아연도금강판의 기계적 물성 추정)

  • Jin, Ji-Won;Kwak, Sung-Jong;Kim, Tae-Seong;Noh, Ki-Han;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.529-535
    • /
    • 2012
  • This paper deals with the determination of mechanical properties of various galvanized steel sheets that are used for fabricating automobile bodies; the instrumented indentation technique and finite element analysis were used for the determination. First, tensile tests were conducted to obtain the true stress-true strain curves of galvanized steel sheets with various thicknesses. Load-deformation curves were then obtained by using the instrumented indentation testing machine, and they were compared with load-deformation curves obtained by finite element analysis. Further, true stress-true strain curves were obtained at the optimal observation point by finite element analysis.

Changes of Microstructures and Mechanical Properties of Recycled AC2B Alloy Chip Fabricated by Solution Heat Treatment (재활용 절삭칩으로 제조된 AC2B 합금의 용체화 열처리에 따른 미세조직 및 기계적특성 변화)

  • Kim, Dong-Hyuk;Yoon, Jong-Cheon;Choi, Chang-Young;Choi, Si-Geun;Hong, Myoung-Pyo;Shin, Sang-Yoon;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.38 no.2
    • /
    • pp.32-40
    • /
    • 2018
  • Changes in the microstructures and mechanical properties of an AC2B alloy through solution heat treatment were investigated using recycled AC2B cutting chips as raw material. The as-cast microstructure of the AC2B alloy comprised ${\alpha}$-Al, $Al_2Cu$, and coarse needle-shaped phases considered to be eutectic Si and an Al-Fe-Si based intermetallic compound. After solution heat treatments at $505^{\circ}C$ for 1 h and 6 h, the samples showed complete dissolution of $Al_2Cu$ and relatively fine distribution of intermetallic compounds. Hardness test results showed that the hardness rapidly increased after the solution heat treatment for 1 h by solid solution hardening, and the increase of hardness exhibited a plateau from 1 h to 6 h. The results of the hardness and tensile tests showed that there was no visible difference in the effect of 1 h and 6 h solid solution treatment.

Effect of CaMgSn Ternary Phase on the Aging Response of Mg-Sn-Zn-Ca Alloys

  • Wahid, Shah Abdul;Lim, Hyun-Kyu;Jung, Young-Gil;Yang, Won-Seok;Ha, Seong-Ho;Yoon, Young-Ok;Kim, Shae K.
    • Journal of Korea Foundry Society
    • /
    • v.38 no.4
    • /
    • pp.75-81
    • /
    • 2018
  • This study examined the effect of the CaMgSn ternary phase on the aging response of the Mg-Sn-Zn alloy. The results revealed that the CaMgSn ternary phase formed in rod-like or needle-like shapes in Mg-3Zn-0.3Ca-xSn (x=1.5, 3, and 5 wt%) alloys and its size decreased as the Sn content increased from 1.5 wt% to 5 wt%. The Mg-3Zn-0.3Ca-5Sn alloy with a relatively fine CaMgSn phase was subjected to solution heat treatment and an aging process. Both the Mg-5Sn-3Zn-0.3Ca and Mg-5Sn-3Zn (base alloy) alloys had similar peak hardness values throughout all aging temperatures but the time-to-peak hardness in the Mg-5Sn-3Zn-0.3Ca alloy was 24-36 hours-earlier than that in the base alloy. Precipitates in the Mg-5Sn-3Zn-0.3Ca alloy were more refined than those in the Mg-5Sn-3Zn alloy and were mostly formed on basal planes. The $Mg_2Sn$ phase formed in either plate-like or rod-like shapes in the Mg-5Sn-3Zn alloy, whereas block-shaped $Mg_2Sn$ particles also formed in the Mg-5Sn-3Zn-0.3Ca alloy.

Quantitative Analysis of Skarn Ore Using 3D Images of X-ray Computed Tomography (3차원 X-ray 단층 화상을 이용한 스카른 광석의 정량분석 연구)

  • Jeong, Mi-Hee;Cho, Sang-Ho;Jeong, Soo-Bok;Kim, Young-Hun;Park, Jai-Koo;Kaneko, Katsuhiko
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.211-217
    • /
    • 2010
  • A micro-focus X-ray computed tomography (CT) was employed to determine quantitative phase analysis of skarn Zn-Pb-Cu ore by nondestructive visualization of the internal mineral distribution of a skarn ore. The micro CT images of the ore were calibrated to remove beam hardening artifacts, and compared with its scanning electron microscope (SEM) images to set the threshold of CT number range covering sulfide ore minerals. The volume ratio of sulfide and gangue minerals was calculated 20.5% and 79.5%, respectively. The quantitative 3D X-ray CT could be applied to analyse the distribution of economic minerals and their recovery.

Hardening properties of MMA Monomer Using EPS in addition of Initiator and Promoter (개시제 및 촉진제의 첨가에 따른 EPS 혼입 MMA 수지의 경화특성)

  • Lee, Jung-Hui;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.929-932
    • /
    • 2008
  • The unsaturated polyester(UP) and epoxy resin have a superior material properties and a chemical resistance using sewerage pipes rehabilitation. However, UP and epoxy have not a low temperatures harding, the requirement $8{\sim}11$ hours long times harding and heating system used by reinforcement liner. This study is to evaluate the effects of low temperature harding properties methyl methacrylate(MMA) monomer using expanded polystyrene(EPS) in addition of initiator and promoters. From the test result, viscosity tends to increase with increasing EPS contents. However, harding time change of the MMA resins which it follows in addition of the initiator and promoter.

  • PDF

An Experimental Study on the Durability and Load Carrying Capacity of RC Structure Repair System Using FR-ECC (고인성 내화보수모르터(FR-ECC)를 활용한 RC 구조물 보수공법의 내구성능 및 내하력에 관한 실험적 연구)

  • Kim, Jeong Hee;Lim, Seung Chan;Kim, Jae Hwan;Kwon, Yung Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.75-86
    • /
    • 2012
  • This paper presents some research results on the shrinkage characteristics and frost resistance before and after cracking of FR-ECC(Fire Resistance-Engineered Cementitious Composite). Also, a waterstop performance and exfoliating resistance of multi-layer lining specimens using FR-ECC and flexural performance of beam member by repaired FR-ECC are estimated in this paper. Experimental results indicate that the plastic shrinkage crack and length change ratio of FR-ECC have been reduced as compared with that of the existing repair mortar, and that its crack resistance on the dry shrinkage is improved under the confining stress. As well as FR-ECC has been great in the frost resistance and its tensile properties under the cracked state have been not reduced by freezing and thawing reaction. In addition, beam member by repaired FR-ECC have been increased in the flexural properties such as initial crack moment, yeild moment, and its crack width has been controled in a stable by the frexural failure.

The Effects of Processing Parameters on Surface Hardening Layer Characteristics of Low Temperature Plasma Nitriding of 316L Austenitic Stainless Steel (316L 오스테나이트계 스테인리스강의 저온 플라즈마질화처리시 공정변수가 표면경화층 특성에 미치는 영향)

  • Lee, Insup
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.4
    • /
    • pp.194-202
    • /
    • 2019
  • A systematic investigation was made on the influence of processing parameters such as gas composition and treatment temperature on the surface characteristics of hardened layers of low temperature plasma nitrided 316L Austenitic Stainless Steel. Various nitriding processes were conducted by changing temperature ($370^{\circ}C$ to $430^{\circ}C$) and changing $N_2$ percentage (10% to 25%) for 15 hours in the glow discharge environment of a gas mixture of $N_2$ and $H_2$ in a plasma nitriding system. In this process a constant pressure of 4 Torr was maintained. Increasing nitriding temperature from $370^{\circ}C$ to $430^{\circ}C$, increases the thickness of S phase layer and the surface hardness, and also makes an improvement in corrosion resistance, irrespective of nitrogen percent. On the other hand, increasing nitrogen percent from 10% to 25% at $430^{\circ}C$ decreases corrosion resistance although it increases the surface hardness and the thickness of S phase layer. Therefore, optimized condition was selected as nitriding temperature of $430^{\circ}C$ with 10% nitrogen, as at this condition, the treated sample showed better corrosion resistance. Moreover to further increase the thickness of S phase layer and surface hardness without compromising the corrosion behavior, further research was conducted by fixing the $N_2$ content at 10% with introducing various amount of $CH_4$ content from 0% to 5% in the nitriding atmosphere. The best treatment condition was determined as 10% $N_2$ and 5% $CH_4$ content at $430^{\circ}C$, where the thickness of S phase layer of about $17{\mu}m$ and a surface hardness of $980HV_{0.1}$ were obtained (before treatment $250HV_{0.1}$ hardness). This specimen also showed much higher pitting potential, i.e. better corrosion resistance, than specimens treated at different process conditions and the untreated one.

Cell-laden Gelatin Fiber Contained Calcium Phosphate Biomaterials as a Stem Cell Delivery Vehicle for Bone Repair (세포 함유 젤라틴 파이버 응용을 통한 골 재생 유도용 인산칼슘 생체재료 세포 탑재 연구)

  • Kim, Seon-Hwa;Hwang, Changmo;Park, Sang-Hyug
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.61-70
    • /
    • 2022
  • Natural and synthetic forms of calcium phosphate cement (CPC) have been widely used in bone repair and augmentation. The major challenge of injectable CPC is to deliver the cells without cell death in order to regenerate new bone. The study objective was to investigate for the potential of stem cell-laden gelatin fibers containing injectable, nanocrystalline CPC to function as a delivery system. Gelatin noddle fiber method was developed to delivered cells into nCPC. Experimental groups were prepared by mixing cells with nCPC, mixing cell-laden gelatin fibers with nCPC and mixing cell-laden gelatin fibers containing BMP-2 with nCPC. Media diffusion test was conducted after dissolving the gelatin fibers. SEM examined the generated channels and delivered cell morphology. Fibers mixed with nCPC showed physical setting and hardening within 20 min after injection and showed good shape maintenances. The gelatin fibers mixed nCPC group had several vacant channels generated from the dissolved gelatin. Particularly, proliferation and attachment of the cells were observed inside of the channels. While live cells were not observed in the cell mixed nCPC group, cells delivered with the gelatin fibers into the nCPC showed good viability and increased DNA content with culture. Cell-laden gelatin fiber was a novel method for cell delivery into nCPC without cell damages. Results also indicated the osteogenic differentiation of gelatin fiber delivered cells. We suggest that the cell-laden gelatin fibers mixed with nCPC can be used as an injectable cell delivery vehicle and the addition of BMP-2 to enhances osteogenesis.

Three dimensional dynamic soil interaction analysis in time domain through the soft computing

  • Han, Bin;Sun, J.B.;Heidarzadeh, Milad;Jam, M.M. Nemati;Benjeddou, O.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.761-773
    • /
    • 2021
  • This study presents a 3D non-linear finite element (FE) assessment of dynamic soil-structure interaction (SSI). The numerical investigation has been performed on the time domain through a Finite Element (FE) system, while considering the nonlinear behavior of soil and the multi-directional nature of genuine seismic events. Later, the FE outcomes are analyzed to the recorded in-situ free-field and structural movements, emphasizing the numerical model's great result in duplicating the observed response. In this work, the soil response is simulated using an isotropic hardening elastic-plastic hysteretic model utilizing HSsmall. It is feasible to define the non-linear cycle response from small to large strain amplitudes through this model as well as for the shift in beginning stiffness with depth that happens during cyclic loading. One of the most difficult and unexpected tasks in resolving soil-structure interaction concerns is picking an appropriate ground motion predicted across an earthquake or assessing the geometrical abnormalities in the soil waves. Furthermore, an artificial neural network (ANN) has been utilized to properly forecast the non-linear behavior of soil and its multi-directional character, which demonstrated the accuracy of the ANN based on the RMSE and R2 values. The total result of this research demonstrates that complicated dynamic soil-structure interaction processes may be addressed directly by passing the significant simplifications of well-established substructure techniques.

Cost-Benefit Analysis of Back School Program for Occupational Low Back Pain Patients (직업성 요통환자에서 재활 프로그램(Back School Program) 도입의 비용-편익분석)

  • Ju, Yeong-Su;Ha, Mi-Na;Han, Sang-Hwan;Kwon, Ho-Jang;Cho, Soo-Hun;Kim, Chang-Yup;Kim, Sun-Min
    • Journal of Preventive Medicine and Public Health
    • /
    • v.29 no.2 s.53
    • /
    • pp.347-357
    • /
    • 1996
  • Although occupational low back pain accounts for $20\sim40%$ of all occupational illness and injury, there are limited numbers of studies regarding the effectiveness of back school program. The objective of this study was to evaluate the economic benefit of back school program for early return to work of occupational low back pain patients in the current occupational injury compensation and management system. The cost-benefit analysis in this study was conducted to evaluate the relative magnitude of benefit to cost. The total cost was estimated by calculating the value of components in back school program according to governmental budget protocol. The back school program was consisted of three major approaches, pain center, work-hardening program and funcional restoration program and each of components had various facilities and experts. The total amount of cost was estimated as 250,866,220 won per year. The most promising type of back school program were quite intensive (a 3 to 5-week stay in a specialized center), therefore, if we adopted the 5-week stay course, 10 courses could be held in a year. Following to the medical act, 20 patients per doctor could participate in a each course, ie, total 200 patients in a year. As a result, we could estimate the cost of 1,254,331 won a patient. We estimated the benefit by using data of a few local labor offices about average medical treatment beneficiary and off-duty beneficiary of 46 occupational low back pain patients in 1994. Ullman and Larsson (1977) mentioned that the group of chronic low back pain patients who participated in back school program needed less time to recover by 48.4% of beneficiary duration. And in the trying to estimate the benefit, we asked 10 rehabilitation board certificate doctors about reduction proportion of treatment cost by introducing back school program. The answered reduction proportions were in the range of $30\sim45%$, average 39%. As a final result, we could see that the introduction of back school program in treatment of chronic occupational low back pain patients could produce the benefit to cost ratio as 3.90 and 6.28. And we could conclude that the introduction of back school program was beneficial to current occupational injury compensation and management system.

  • PDF