• Title/Summary/Keyword: system generator

Search Result 4,045, Processing Time 0.034 seconds

Effect of $Al^{3+}$ on Labeling Efficiency and Biodistribution of $^{99m}Tc$-MDP ($Al^{3+}$ 존재가 $^{99m}Tc$-MDP의 표지효율과 생체내 분포에 미치는 영향)

  • Chang, Young-Soo;Jeong, Jae-Min;Kim, Young-Ju;Kwark, Cheol-Eun;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.3
    • /
    • pp.361-366
    • /
    • 1996
  • This study was to determine the effect of $Al^{3+}$ in $^{99m}Tc$ eluate from $^{99}Mo-^{99m}Tc$ generator on labeling efficiency and biodistribution of $^{99m}Tc$-MDP. The chromatographic analysis of $^{99m}Tc$-MDP preparations containing $Al^{3+}(0-62.5{\mu}g/ml)$ showed decreased labeling efficiency $^{99m}Tc$ pertechnetate and hydrolyzed reduced $^{99m}Tc$ fraction increased with increasing concentrations of aluminum. However, the chromatography system could not discern between hydrolyzed reduced $^{99m}Tc$ and $^{99m}Tc$ labeled colloid. $^{99m}Tc$-MDP preparations containing aluminum were relatively stable. Chromatographic analysis also confirmed that no significant differences were observed in the radiochemical purity of the filtered and the unfiltered $^{99m}Tc$-MDP preparations containing aluminum by $0.22{\mu}m$ syringe filter. In biodistribution data of ICR-mice, blood and heart uptake were increasing with increasing concentrations of aluminum, because of decreasing labeling efficiency of $^{99m}Tc$-MDP and increasing of $^{99m}Tc$ pertechnetate. However, liver and bone uptake were not significantly increased. In rat images no difference were observed at $5{\mu}g/ml\;Al^{3+}$ compare with at $0{\mu}g/ml\;Al^{3+}$, but at $10{\mu}g/ml\;Al^{3+}$ lumbar uptake was increased. As a practical conclusion, a concentration below $10{\mu}g/ml\;Al^{3+}$($10{\mu}g/ml\;Al^{3+}$ is the maximum allowed in pertechnetate eluate from $^{99}Mo-^{99m}Tc$ generator by USP.) in $^{99m}Tc$-MDP radiopharmaceutical result in low labeling efficiency. Radiochemical purity 90% of $^{99m}Tc$-MDP is the minimum allowed by USP. Therefore, when soft tissue uptake is observed in $^{99m}Tc$-MDP bone scan and labeling efficiency is above 90%, we can expect that $Al^{3+}$ in pertechnetated eluate is not the cause of soft tissue uptake.

  • PDF

A Study On Design of ZigBee Chip Communication Module for Remote Radiation Measurement (원격 방사선 측정을 위한 ZigBee 원칩형 통신 모듈 설계에 대한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.552-558
    • /
    • 2014
  • This paper suggests how to design a ZigBee-chip-based communication module to remotely measure radiation level. The suggested communication module consists of two control processors for the chip as generally required to configure a ZigBee system, and one chip module to configure a ZigBee RF device. The ZigBee-chip-based communication module for remote radiation measurement consists of a wireless communication controller; sensor and high-voltage generator; charger and power supply circuit; wired communication part; and RF circuit and antenna. The wireless communication controller is to control wireless communication for ZigBee and to measure radiation level remotely. The sensor and high-voltage generator generates 500 V in two consecutive series to amplify and filter pulses of radiation detected by G-M Tube. The charger and power supply circuit part is to charge lithium-ion battery and supply power to one-chip processors. The wired communication part serves as a RS-485/422 interface to enable USB interface and wired remote communication for interfacing with PC and debugging. RF circuit and antenna applies an RLC passive component for chip antenna to configure BALUN and antenna impedance matching circuit, allowing wireless communication. After configuring the ZigBee-chip-based communication module, tests were conducted to measure radiation level remotely: data were successfully transmitted in 10-meter and 100-meter distances, measuring radiation level in a remote condition. The communication module allows an environment where radiation level can be remotely measured in an economically beneficial way as it not only consumes less electricity but also costs less. By securing linearity of a radiation measuring device and by minimizing the device itself, it is possible to set up an environment where radiation can be measured in a reliable manner, and radiation level is monitored real-time.

Study on the Lubricity Characteristics of Bio-heavy Oil for Power Generation by Various feedstocks (다양한 원료에 따른 발전용 바이오중유의 윤활 특성 연구)

  • Kim, Jae-Kon;Jang, Eun-Jung;Jeon, Cheol-Hwan;Hwang, In-Ha;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.985-994
    • /
    • 2018
  • Bio-heavy oil for power generation is a product made by mixing animal fat, vegetable oil and fatty acid methyl ester or its residues and is being used as steam heavy fuel(B-C) for power generation in Korea. However, if the fuel supply system of the fuel pump, the flow pump, the injector, etc., which is transferred to the boiler of the generator due to the composition of the raw material of the bio-heavy oi, causes abrasive wear, it can cause serious damage. Therefore, this study evaluates the fuel characteristics and lubricity properties of various raw materials of bio-heavy oil for power generation, and suggests fuel composition of biofuel for power generation to reduce frictional wear of generator. The average value of lubricity (HFRR abrasion) for bio-heavy oil feedstocks for power generation is $137{\mu}m$, and it varies from $60{\mu}m$ to $214{\mu}m$ depending on the raw materials. The order of lubricity is Oleo pitch> BD pitch> CNSL> Animal fat> RBDPO> PAO> Dark oil> Food waste oil. The average lubricity for the five bio-heavy oil samples is $151{\mu}m$ and the distribution is $101{\mu}m$ to $185{\mu}m$. The order of lubricity is Fuel 1> Fuel 3> Fuel 4> Fuel 2> Fuel 5. Bio-heavy oil samples (average $151{\mu}m$) show lower lubricity than heavy oil C ($128{\mu}m$). It is believed that bio-heavy oil for power generation is composed of fatty acid material, which is lower in paraffin and aromatics content than heavy oil(B-C) and has a low viscosity and high acid value, resulting in inhibition of the formation of lubricating film by acidic component. Therefore, in order to reduce friction and abrasion, it is expected to increase the lubrication of fuel when it contains more than 60% Oleo pitch and BD pitch as raw materials of bio-heavy oil for power generation.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

Actual Status of and Measure for False Alarm of Electronic Security in Korea (한국 기계경비업무의 오경보 대응책)

  • Park, Dong-Kyun;Kim, Tae-Min
    • Korean Security Journal
    • /
    • no.30
    • /
    • pp.33-60
    • /
    • 2012
  • False alarm of Electronic security causes various serious side effects such as decrease of electronic security guard's morale caused by unnecessary mobilization, increase of fatigue caused by workload increase, increase of electronic security company owner's management burden and decrease of electronic security service utilization rate caused by customer's distrust. Therefore, the study considered the Korean regulation related with false alarm of electronic security and proposed actual status of false alarm and measure for it. The study proposed systematic resolution assignments and political assignments in relation with the measure for false alarm. Systematic resolution assignments are as follows. First, electronic security company should construct electronic security system accurately from the initial step of security consulting and security planning related with target facility. Second, it is necessary to encourage installation and operation of video monitoring system. Third, sensor wiring should be separated. Fourth, the measures for false alarm depending on main system causes should be prepared. It is necessary to encourage the installation of 'arming disarming alarm sound' generator. In addition, the measures for false arm depending on the characteristics of sensor should be prepared and standardized. Fifth, system maintenance should be reinforced. Political assignments related with the measures for false alarm are as follows. First, it is necessary to reinforce education & training. Individual nurturing & education process should be run by electronic security company or the education focusing on the measure for false alarm should be performed in job training defined in "Security Industry Act". Second, it is necessary to establish and reinforce legal regulation and establish device. If police authority standardizes the documents related with false alarm, provides their forms and requires them for periodical reports or documents, it is expected that good measures for false alarm will be prepared on the basis of actual data in the future. Third, cooperation organization to discuss the measures for false alarm like 'Conference for False Alarm of Electronic Security' should be organized and operated. Fourth, interest and role of electronic security company and electronic security supervisor should be enlarged.

  • PDF

The Evaluation of Disinfection and Operation of Large Scale Anoxic Chamber System for Museum Insects (대용량 저산소 농도 살충 챔버 시스템을 이용한 박물관 해충의 살충력 및 운용성 평가)

  • Oh, Joon Suk;Choi, Jung Eun
    • Journal of Conservation Science
    • /
    • v.30 no.2
    • /
    • pp.137-148
    • /
    • 2014
  • Large scale anoxic chamber system(volume $28m^3$) was developed and installed at The National Folk Museum of Korea for the first time in Korea. In order to get optimal anoxic treatment condition, we compared the disinfection of adults, larvae and eggs of cigarette beetles using nitrogen and argon. The time for complete disinfection of cigarette beetles in pine wooden blocks exposed to nitrogen at oxygen concentration 0.01% and 50% in relative humidity were 15 days at $20^{\circ}C$, 10 days at $25^{\circ}C$, and 7 days $30^{\circ}C$. Time were 10 days at $20^{\circ}C$, 7 days at $25^{\circ}C$, and 5 days $30^{\circ}C$ in argon anoxic atmosphere. From the mortality of cigarette beetles, optimal disinfection condition was oxygen concentration 0.01%, $25^{\circ}C$ in temperature, 50% in relative humidity and exposure time 21 days at nitrogen atmosphere. And when large scale anoxic chamber system was supplied nitrogen by nitrogen generator for anoxic treatment of many collections or large collections, it could be operated stably. To verify optimal disinfection condition, museum insects(adults, larvae, pupae and eggs of cigarette beetles in pine wooden blocks, cotton fabrics and Korean paper book, adults and larvae of drugstore beetles in pine wooden blocks, cotton fabrics and Korean paper book, larvae of varied carpet beetles in pine wooden block and silk fabrics, adults and larvae of hide beetles and adults of rice weevils in breeding boxes) which exposed at optimal disinfection condition, were completely killed.

Evaluation of Approximate Exposure to Low-dose Ionizing Radiation from Medical Images using a Computed Radiography (CR) System (전산화 방사선촬영(CR) 시스템을 이용한 근사적 의료 피폭 선량 평가)

  • Yu, Minsun;Lee, Jaeseung;Im, Inchul
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.455-464
    • /
    • 2012
  • This study suggested evaluation of approximately exposure to low-dose ionization radiation from medical images using a computed radiography (CR) system in standard X-ray examination and experimental model can compare diagnostic reference level (DRL) will suggest on optimization condition of guard about medical radiation of low dose space. Entrance surface dose (ESD) cross-measuring by standard dosimeter and optically stimulated luminescence dosimeters (OSLDs) in experiment condition about tube voltage and current of X-ray generator. Also, Hounsfield unit (HU) scale measured about each experiment condition in CR system and after character relationship table and graph tabulate about ESD and HU scale, approximately radiation dose about head, neck, thoracic, abdomen, and pelvis draw a measurement. In result measuring head, neck, thoracic, abdomen, and pelvis, average of ESD is 2.10, 2.01, 1.13, 2.97, and 1.95 mGy, respectively. HU scale is $3,276{\pm}3.72$, $3,217{\pm}2.93$, $2,768{\pm}3.13$, $3,782{\pm}5.19$, and $2,318{\pm}4.64$, respectively, in CR image. At this moment, using characteristic relationship table and graph, ESD measured approximately 2.16, 2.06, 1.19, 3.05, and 2.07 mGy, respectively. Average error of measuring value and ESD measured approximately smaller than 3%, this have credibility cover all the bases radiology area of measurement 5%. In its final analysis, this study suggest new experimental model approximately can assess radiation dose of patient in standard X-ray examination and can apply to CR examination, digital radiography and even film-cassette system.

Study of system using load cell for real time weight sensing of artificial incubator (인공부화기의 실시간 중량감지를 위한 로드셀을 이용한 시스템 연구)

  • jeong, Jin-hyoung;Kim, Ae-kyung;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.144-149
    • /
    • 2018
  • The eggs are incubated for 18 days through the generator and incubated in the developing incubator. During the developmental period, the weight loss of the fetus is correlated with the ventricular formation, and the proper ventricular formation is also associated with the healthy embryonic hatching and the egg hatching rate. However, in the incubator period of the domestic hatchery, it is a reality to acquire the resultant side by the Iranian standard weight measurement with the experience of the hatchery and the person concerned and the development period without the apparatus for measuring the present weight. As a result, prevalence of early mortality, hunger and illness during hatching are frequent. Monitoring the reduction of weaning weight is crucial to obtaining chick quality and hatching performance with weight changes within the development machine. Water loss is different depending on the size of eggs, egg shell, and elder group. We can expect to increase the hatching rate by measuring the weight change in real time and optimizing the ventilation change accordingly. There is a need to develop a real-time measurement system that can control 10 to 13% reduction of the total weight during hatching. The system through this study is a way to check the one - time directly when moving the existing egg, and it is impossible to control the measurement of the fetal water evaporation within the development period. Unlike systems that do not affect the hatching rate, four load cells are connected in parallel on the Arduino sketch board and the AT-command command is used to connect the mobile phone and computer in real time. The communication speed of Bluetooth was set to 15200 to match the communication speed of Arduino and Hyper-terminal program. The real - time monitoring system was designed to visually check the change of the weight of the fetus in the artificial incubator. In this way, we aimed to improve the hatching rate and health condition of the hatching eggs.

Development of integrated microbubble and microfilter system for liquid fertilizer production by removing total coliform and improving reduction of suspended solid in livestock manure (가축분뇨 내 대장균 제거와 부유물질 저감 효율 향상을 통한 추비 생산용 미세기포 부상분리와 마이크로 필터 연계 시스템 개발)

  • Jang, Jae Kyung;Lee, Donggwan;Paek, Yee;Lee, Taeseok;Lim, Ryu Gap;Kim, Taeyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.139-147
    • /
    • 2021
  • Livestock manure is used as an organic fertilizer to replace chemical fertilizers after sufficient fermentation in an aerobic bioreactor. On the other hand, liquid manure disposal problems occur repeatedly because soil spraying is restricted during the summer when the crops are growing. To use liquid fertilizer (LF) as an additional nutrient source for crops, it is necessary to reduce the amount of suspended solids (SS) in the liquid fertilizer and secure stability problems against pathogenic microorganisms. This study examined the effects of the simultaneous SS removal and E.coli sterilization in the LF using the microbubble (MB) generator (FeMgO catalyst insertion). The remaining SS were further removed using the integrated microbubble and microfilter system. During the floating process in the MB device, the SS were removed by 57.9%, and the coliform group was not detected (16,200→0 MPN/100 mL). By optimizing the HRT of the integrated system, the removal efficiency of the SS was improved by 92.9% under the 0.1h of HRT condition. After checking the properties of the treated LF, 64.5%, 70.1%, 54.9%, and 51.5% of the TCOD, SCOD, PO4-P, and TN, respectively, were removed. The treated effluent from such an integrated system has a lower SS content than that of the existing LF and does not contain coliforms; therefore, it can be used directly as an additional fertilizer.

Stand-alone Real-time Healthcare Monitoring Driven by Integration of Both Triboelectric and Electro-magnetic Effects (실시간 헬스케어 모니터링의 독립 구동을 위한 접촉대전 발전과 전자기 발전 원리의 융합)

  • Cho, Sumin;Joung, Yoonsu;Kim, Hyeonsu;Park, Minseok;Lee, Donghan;Kam, Dongik;Jang, Sunmin;Ra, Yoonsang;Cha, Kyoung Je;Kim, Hyung Woo;Seo, Kyoung Duck;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Recently, the bio-healthcare market is enlarging worldwide due to various reasons such as the COVID-19 pandemic. Among them, biometric measurement and analysis technology are expected to bring about future technological innovation and socio-economic ripple effect. Existing systems require a large-capacity battery to drive signal processing, wireless transmission part, and an operating system in the process. However, due to the limitation of the battery capacity, it causes a spatio-temporal limitation on the use of the device. This limitation can act as a cause for the disconnection of data required for the user's health care monitoring, so it is one of the major obstacles of the health care device. In this study, we report the concept of a standalone healthcare monitoring module, which is based on both triboelectric effects and electromagnetic effects, by converting biomechanical energy into suitable electric energy. The proposed system can be operated independently without an external power source. In particular, the wireless foot pressure measurement monitoring system, which is rationally designed triboelectric sensor (TES), can recognize the user's walking habits through foot pressure measurement. By applying the triboelectric effects to the contact-separation behavior that occurs during walking, an effective foot pressure sensor was made, the performance of the sensor was verified through an electrical output signal according to the pressure, and its dynamic behavior is measured through a signal processing circuit using a capacitor. In addition, the biomechanical energy dissipated during walking is harvested as electrical energy by using the electromagnetic induction effect to be used as a power source for wireless transmission and signal processing. Therefore, the proposed system has a great potential to reduce the inconvenience of charging caused by limited battery capacity and to overcome the problem of data disconnection.