• Title/Summary/Keyword: system dynamics models

Search Result 525, Processing Time 0.025 seconds

Dynamic Characteristics of Clutch System for an Automatic Transmission (자동변속기 클러치 시스템의 동특성 해석)

  • Kim, Ju Hwan;Kim, Hyun-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.284-294
    • /
    • 1996
  • In this paper, dynamic characteristics of an AT clutch system were investigated considering the dynamics of check ball and hydraulic control valves. Dynamic model of a pressure control solenoid valve (PCSV) was obtained by Bondgraph and permeance method. Also, the clutch piston and check ball dynamics were modeled by considering the effect of centrifugal force of the oil entrapped in the clutch chamber. In order to validate the dynamic models obtained, plunger displacement of PCSV and pressure response of the clutch supply lines were compared with the available experimental data, which were in good accordance with the numerical results. Using the dynamic model of the clutch system, simulations were performed to investigate the effect of the rotational speed on the response of clutch cylinder pressure, clutch piston and check ball displacement, and oil flow rate into the cylinder and flow rate out of the check valve.

Dynamic Analysis of Plates with Active Constrained Layer Damping (능동구속층 감쇠를 이용한 판의 동역학적 해석)

  • 박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.581-586
    • /
    • 2004
  • This paper presents Newtonian formulation of the dynamics of plates treated fully with Active Constrained Layer Damping (ACLD). The developed equations of the plate/ACLD system provide analytical models far predicting the dynamic of laminated plates subjected to passive and active vibration damping controls. Numerical solutions of the analytical models are presented fir simply-supported plates in order to study the performance of the plate/ACLD system for different control strategies. The developed models present invaluable means for designing and predicting the performance of the smart laminated plates that can be used in many critical engineering applications.

  • PDF

Feedforward actuator controller development using the backward-difference method for real-time hybrid simulation

  • Phillips, Brian M.;Takada, Shuta;Spencer, B.F. Jr.;Fujino, Yozo
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1081-1103
    • /
    • 2014
  • Real-time hybrid simulation (RTHS) has emerged as an important tool for testing large and complex structures with a focus on rate-dependent specimen behavior. Due to the real-time constraints, accurate dynamic control of servo-hydraulic actuators is required. These actuators are necessary to realize the desired displacements of the specimen, however they introduce unwanted dynamics into the RTHS loop. Model-based actuator control strategies are based on linearized models of the servo-hydraulic system, where the controller is taken as the model inverse to effectively cancel out the servo-hydraulic dynamics (i.e., model-based feedforward control). An accurate model of a servo-hydraulic system generally contains more poles than zeros, leading to an improper inverse (i.e., more zeros than poles). Rather than introduce additional poles to create a proper inverse controller, the higher order derivatives necessary for implementing the improper inverse can be calculated from available information. The backward-difference method is proposed as an alternative to discretize an improper continuous time model for use as a feedforward controller in RTHS. This method is flexible in that derivatives of any order can be explicitly calculated such that controllers can be developed for models of any order. Using model-based feedforward control with the backward-difference method, accurate actuator control and stable RTHS are demonstrated using a nine-story steel building model implemented with an MR damper.

Comparison Study of Viscous Flutter Boundary for the AGARD 445.6 Wing Using Different Turbulent Boundary Layer Models (난류 경계층 모델을 고려한 AGARD 445.6 날개의 플러터 해석 및 실험결과 비교)

  • Kim, Yo-Han;Kim, Dong-Hyun;Kim, Dong-Man;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.704-710
    • /
    • 2009
  • In this study, a comparison study of flutter analysis for the AGARD 445.6 wing with wind turnnel test data has been conducted in the subsonic, transonic and supersonic flow regions. Nonlinear aeroelastic using FSIPRO3D which is a generalized user-friendly fluid-structure analyses have been conducted for a 3D wing configuration considering shockwave and turbulent viscosity effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structure dynamics(CSD), finite element method(FEM) and computations fluid dynamics(CFD) in the time domain. MSC/NASTRAN is used for the vibration analysis of a wing model, and then the result is applied to the FSIPRO3D module. the results for dynamic aeroelastic response using different turbulent models are presented for several Mach numbers. Calculated flutter boundary are compared with the wind-tunnel experimental and the results show very good agreements.

A Study on Improving Services of u-Multiplex (u-멀티플렉스 서비스의 한계와 개선방안에 관한 연구)

  • Kim, Hyun-Soo;Lee, Kang-Bae;Jung, Jae-Un
    • Korean System Dynamics Review
    • /
    • v.10 no.2
    • /
    • pp.5-27
    • /
    • 2009
  • Multiplex is a representative culture facility of citizens. Therefore, a lot of researches and investment on multiplex are carried out to improve benefits of service suppliers and users. Especially, focused on main services of a theatre such as ticket booking and issuing within multiplex, examination of tickets, admission information of movie screens and screening information inquiry, improvement activities are carried out. However, it is not enough to evaluate on what efficiency the above efforts have in the viewpoint of customer benefits and business. Therefore, this study analyzed value and limit of the newest service of multiplex applying the existing ubiquitous concept(u-multiplex service), and proposed a model and a plan for improving the existing services. The study interviewed with specialists in the related field and applied workshop-shape group interview to 110 university students and simulated service models. The contribution of the study is to analyze the value and limit of the existing multiplex service objectively, and to propose a new service model and plan to improve its limitation. In the future, the study plans to research on service models by extending space and functional roles of multiplex to the whole subsidiary facilities including movie screens.

  • PDF

AERODYNAMIC ANALYSIS AND EXPERIMENTAL TEST FOR 4-BLADED VERTICAL AXIS WIND-TURBINE USING LARGE-EDDY SIMULATION (LES) TURBULENCE MODEL (LES 난류모델을 이용한 4엽형 수직축 풍력발전기 공력해석 및 실험)

  • Ryu, G.J.;Kim, D.H.;Choo, H.H.;Shim, J.P.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, aerodynamic analyses have been conducted for 4-Bladed Vertical-Axis Wind Turbine (VAWT) configuration and the results are compared with experimental data. Reynolds-averaged Navier-Stokes equation with LES turbulence model is solved for unsteady flow problems. In addition, the computation results by standard k-${\omega}$ and SST k-${\omega}$ turbulence models are also presented and compared. An experiment model of 4-Bladed VAWT model has been designed and constructed herein. Experimental tests for aerodynamic performance of the present VAWT model are practically conducted using the vehicle mounted testing system. Comparison results between the experiment and the computational fluid dynamics (CFD) analyses are presented in order to show the accuracy of CFD analyses using the different turbulent models.

CFD Analytical Analysis of Jetting Characteristics in Aerosol Jet Printing Process Using Particle Tracking Technique (입자 추적 기법을 활용한 에어로졸 제트 프린팅 공정의 분사 특성에 대한 CFD 해석적 분석)

  • Sang-Min Chung;Seungwoon Park;Euikeun Choi;Soobin Oh;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • This thesis investigates the jetting characteristics of an aerosol jet printing (AJP) process as a function of design and operating conditions. The governing equations of the AJP system are derived for experimentation and analysis. To understand the characteristics of the AJP system, it analyzes the jetting characteristics as a function of the flow rate of the carrier gas and the sheath gas, and the variation of the linewidth with the nozzle exit size based on particle tracking. The thesis focuses on computational fluid dynamics (CFD), which is a computer simulation. The particle tracking results obtained by CFD were analyzed using MATLAB. CFD analytical models can be analyzed in environments with different conditions and consider more specific situations than mathematical computational models. The validity of the CFD analysis is shown by comparing the experimental results with the CFD analysis.

CFD Analytical Analysis of Jetting Characteristics in Aerosol Jet Printing Process Using Particle Tracking Technique (입자 추적 기법을 활용한 에어로졸 제트 프린팅 공정의 분사 특성에 대한 CFD 해석적 분석)

  • Sang-Min Chung;Seungwoon Park;Euikeun Choi;Soobin Oh;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.8-14
    • /
    • 2024
  • This paper investigates the jetting characteristics of an aerosol jet printing (AJP) process as a function of design and operating conditions. The governing equations of the AJP system are derived for experimentation and analysis. To understand the characteristics of the AJP system, this thesis analyzes the jetting characteristics as a function of the flow rate of the carrier gas and the sheath gas, and the variation of the linewidth with the nozzle exit size based on particle tracking. This thesis focuses on computational fluid dynamics (CFD), which is a computer simulation. The particle tracking results obtained by CFD were analyzed using MATLAB. CFD analytical models can be analyzed in environments with different conditions and consider more specific situations than mathematical computational models. The validity of the CFD analysis is shown by comparing the experimental results with the CFD analysis.

Determining Optimal Aggregation Interval Size for Travel Time Estimation and Forecasting with Statistical Models (통행시간 산정 및 예측을 위한 최적 집계시간간격 결정에 관한 연구)

  • Park, Dong-Joo
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.3
    • /
    • pp.55-76
    • /
    • 2000
  • We propose a general solution methodology for identifying the optimal aggregation interval sizes as a function of the traffic dynamics and frequency of observations for four cases : i) link travel time estimation, ii) corridor/route travel time estimation, iii) link travel time forecasting. and iv) corridor/route travel time forecasting. We first develop statistical models which define Mean Square Error (MSE) for four different cases and interpret the models from a traffic flow perspective. The emphasis is on i) the tradeoff between the Precision and bias, 2) the difference between estimation and forecasting, and 3) the implication of the correlation between links on the corridor/route travel time estimation and forecasting, We then demonstrate the Proposed models to the real-world travel time data from Houston, Texas which were collected as Part of the Automatic Vehicle Identification (AVI) system of the Houston Transtar system. The best aggregation interval sizes for the link travel time estimation and forecasting were different and the function of the traffic dynamics. For the best aggregation interval sizes for the corridor/route travel time estimation and forecasting, the covariance between links had an important effect.

  • PDF

System Dynamics Approach to Ability of the Police for Solving Crime : Testing the Effect of Civic Cooperation with the Police

  • Lee, Soochang;Jung, Wooyeol
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • The purpose of the present study is to examine the effect of civic cooperation with the police on the number of crime that the police must solve by conducting simulation based on system dynamics. The study sets police oriented-policing model and police-citizen cooperative model to investigate the effect of civic cooperation with the police. As a result of the simulation, the police oriented-policing model shows that the number of crime that police must solve is increasing over time, while the police-citizen cooperative model shows that the number of crime that must be solved by the police is keeping it stable in the increase of crimes. Comparing both models, civic cooperation with the police is more effective in reducing or deterring crime than police oriented-policing activity. The study proves that building cooperative relationship between citizens and the police can become a strategic method for controlling crime effectively without a rapid increase in police finance. It is meaningful in terms of presenting a dynamic change of interaction for reducing crimes between civic cooperation with the police and policing activity of the police over time.