• 제목/요약/키워드: system ductility demand

검색결과 51건 처리시간 0.025초

Cyclic testing of scaled three-story special concentrically braced frame with strongback column

  • Chen, Chui-Hsin;Tsai, Yi-Rung;Tang, Yao
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.163-173
    • /
    • 2019
  • For Special Concentrically Braced Frame (SCBF), it is common that the damage concentrates at a certain story instead of spreading over all stories. Once the damage occurs, the soft-story mechanism is likely to take place and possibly to result in the failure of the whole system with more damage accumulation. In this study, we use a strongback column which is an additional structural component extending along the height of the building, to redistribute the excessive deformation of SCBF and activate more structural members to dissipate energy and thus avoid damage concentration and improve the seismic performance of SCBF. We tested one-third-scaled, three-story, double-story X SCBF specimens with static cyclic loading procedure. Three specimens, namely S73, S42 and S0, which represent different combinations of stiffness and strength factors ${\alpha}$ and ${\beta}$ for the strongback columns, were designed based on results of numerical simulations. Specimens S73 and S42 were the specimens with the strongback columns, and S0 is the specimen without the strongback column. Test results show that the deformation distribution of Specimen S73 is more uniform and more brace members in three stories perform nonlinearly. Comparing Drift Concentration Factor (DCF), we can observe 29% and 11% improvement in Specimen S73 and S42, respectively. This improvement increases the nonlinear demand of the third-story braces and reduces that of the first-story braces where the demand used to be excessive, and, therefore, postpones the rupture of the first-story braces and enhances the ductility and energy dissipation capacity of the whole SCBF system.

U-형 복합보의 휨 성능에 관한 실험적 연구 (Experimental study on the Flexural Capacity of U-shape Composite Beam)

  • 하상수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권3호
    • /
    • pp.143-149
    • /
    • 2019
  • U-형 복합보는 공작물 주차장으로 사용하기 위한 목적으로 개발되었다. 복합보를 공작물로 적용할 때, 가장 우선적으로 고려하여야 할 사항은 낮은 층고와 장경간이다. 또한, 철근 콘크리트 및 강구조가 혼합된 구조이기 때문에 일체성을 확보하고, 소요강도 이상의 구조성능을 확보하여야 한다. 본 연구는 철근 콘크리트 슬래브와 U-형 강판으로 이루어진 복합보의 구조성능을 파악하기 위한 것이다. 복합보의 구조성능을 파악하기 위해 주차장용으로 사용되는 일반적인 U-형 복합보를 기준실험체로 설정하고, 기준실험체 대비 하중방향, U-형 복합보의 춤 및 폭을 변화시킨 실험체를 제작하여 실험을 실시하였다. 실험체 지점간 거리는 4.5m 이며, 하중은 순수 휨구간이 1.5m가 되도록 중앙부 2점가력 하였다. 이론값 산정을 위해 U-형 중앙부의 철근, 강재, 콘크리트 등에 변형게이지를 부착하였으며, 하중점 및 측면에 변위계를 설치하였다. 실험결과, 주차장용으로 계획된 기준실험체의 초기 항복강도는 U-형 강재 밑면에서 처음 발생되었다. 항복강도 이후에는 U-형 강재의 항복구간이 점점 확대되면서 최대강도에 도달되었으며, 최대강도 이후에는 RC 슬래브 콘크리트가 압괴되면서 최종파괴 되었다. 춤을 증가시킨 실험체의 구조성능은 기준실험체와 비교하여 강도 및 연성이 매우 향상된 것을 알 수 있다. 또한, 하중방향에 따른 저항 성능은 부가력으로 가력했을 때 휨성능은 저하되나 연성거동은 증가하므로 휨성능 및 연성을 고려한 설계가 이루어져야 할 것으로 판단된다.

극저온 냉각 챔버 내 냉각 메커니즘 연구 (Study on the Cooling Mechanism in a Cryogenic Cooling System)

  • 이성우;나영상;김영균;전승민;이준호;최성웅
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.146-151
    • /
    • 2024
  • The demand for research on materials with excellent cryogenic strength and ductility has been increasing, particularly for applications such as liquid hydrogen (20 K) storage tanks. To effectively utilize liquid hydrogen, a system capable of maintaining and operating at 20 K is essential. Therefore, preliminary research and verification of the cooling system are crucial. In this study, a heat transfer analysis was conducted on a cooling system to meet the cryogenic environment requirements for cryogenic hydrogen chamber, which are conducted at liquid helium temperatures (4 K). The cooling mechanism in a helium cooling system was examined using numerical analysis. The numerical cooling trends were compared with experimentally obtained cooling results. The good agreement between numerical and experimental results suggests that the numerical approach developed in this study is applicable over a wide range of cryogenic systems.

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • 제6권1호
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.

Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes

  • Beiraghi, Hamid
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.389-402
    • /
    • 2019
  • Reinforced concrete walls and buckling restrained braces are effective structural elements that are used to resist seismic loads. In this paper, the behavior of the reinforced concrete walls coupled with buckling restrained braces is investigated. In such a system, there is not any conventional reinforced concrete coupling beam. The coupling action is provided only by buckling restrained braces that dissipate energy and also cause coupling forces in the wall piers. The studied structures are 10-, 20- and 30-story ones designed according to the ASCE, ACI-318 and AISC codes. Wall nonlinear model is then prepared using the fiber elements in PERFORM-3D software. The responses of the systems subjected to the forward directivity near-fault (NF) and ordinary far-fault (FF) ground motions at maximum considered earthquake (MCE) level are studied. The seismic responses of the structures corresponding to the inter-story drift demand, curvature ductility of wall piers, and coupling ratio of the walls are compared. On average, the results show that the inter-story drift ratio for the examined systems subjected to the far-fault events at MCE level is less than allowable value of 3%. Besides, incremental dynamic analysis is used to examine the considered systems. Results of studied systems show that, the taller the structures, the higher the probability of their collapse. Also, for a certain peak ground acceleration of 1 g, the probability of collapse under NF records is more than twice this probability under FF records.

Effect of sequential earthquakes on evaluation of non-linear response of 3D RC MRFs

  • Oggu, Praveen;Gopikrishna, K.
    • Earthquakes and Structures
    • /
    • 제20권3호
    • /
    • pp.279-293
    • /
    • 2021
  • Most of the existing seismic codes for RC buildings consider only a scenario earthquake for analysis, often characterized by the response spectrum at the specified location. However, any real earthquake event often involves occurrences of multiple earthquakes within a few hours or days, possessing similar or even higher energy than the first earthquake. This critically impairs the rehabilitation measures thereby resulting in the accumulation of structural damages for subsequent earthquakes after the first earthquake. Also, the existing seismic provisions account for the non-linear response of an RC building frame implicitly by specifying a constant response modification factor (R) in a linear elastic design. However, the 'R' specified does not address the changes in structural configurations of RC moment-resisting frames (RC MRFs) viz., building height, number of bays present, bay width, irregularities arising out of mass and stiffness changes, etc. resulting in changed dynamic characteristics of the structural system. Hence, there is an imperative need to assess the seismic performance under sequential earthquake ground motions, considering the adequacy of code-specified 'R' in the representation of dynamic characteristics of RC buildings. Therefore, the present research is focused on the evaluation of the non-linear response of medium-rise 3D RC MRFs with and without vertical irregularities under bi-directional sequential earthquake ground motions using non-linear dynamic analysis. It is evident from the results that collapse probability increases, and 'R' reduces significantly for various RC MRFs subjected to sequential earthquakes, pronouncing the vulnerability and inadequacy of estimation of design base shear by code-specified 'R' under sequential earthquakes.

Performance based assessment for tall core structures consisting of buckling restrained braced frames and RC walls

  • Beiraghi, Hamid;Alinaghi, Ali
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.515-530
    • /
    • 2021
  • In a tall reinforced concrete (RC) core wall system subjected to strong ground motions, inelastic behavior near the base as well as mid-height of the wall is possible. Generally, the formation of plastic hinge in a core wall system may lead to extensive damage and significant repairing cost. A new configuration of core structures consisting of buckling restrained braced frames (BRBFs) and RC walls is an interesting idea in tall building seismic design. This concept can be used in the plan configuration of tall core wall systems. In this study, tall buildings with different configurations of combined core systems were designed and analyzed. Nonlinear time history analysis at severe earthquake level was performed and the results were compared for different configurations. The results demonstrate that using enough BRBFs can reduce the large curvature ductility demand at the base and mid-height of RC core wall systems and also can reduce the maximum inter-story drift ratio. For a better investigation of the structural behavior, the probabilistic approach can lead to in-depth insight. Therefore, incremental dynamic analysis (IDA) curves were calculated to assess the performance. Fragility curves at different limit states were then extracted and compared. Mean IDA curves demonstrate better behavior for a combined system, compared with conventional RC core wall systems. Collapse margin ratio for a RC core wall only system and RC core with enough BRBFs were almost 1.05 and 1.92 respectively. Therefore, it appears that using one RC core wall combined with enough BRBF core is an effective idea to achieve more confidence against tall building collapse and the results demonstrated the potential of the proposed system.

일반 구조물에 대한 신속한 지진 취약성 분석 방법 (Rapid Seismic Vulnerability Assessment Method for Generic Structures)

  • 정성훈;최성모;김강수
    • 콘크리트학회논문집
    • /
    • 제20권1호
    • /
    • pp.51-58
    • /
    • 2008
  • 해석적 방법에 의한 지진 취약성 분석 (fragility analysis)은 입력 거동과 응답 특성의 불확실성을 고려하기 위해 임의화된 확률 변수들 (randomized response variables)로 인하여 해석 과정에 상당한 노력과 시간이 요구된다. 본 연구에서는 구조물의 기본적인 특성인 강성, 강도 및 연성 능력에 따라 지진 취약도 곡선을 바로 도출할 수 있는 새로운 방법을 제안한다. 광범위한 구조물을 대표할 수 있는 일반화된 단자유도계의 동적 해석 결과로부터 로그 정규 취약성 곡선의 도출에 필요한 파라미터를 응답 데이터베이스에 저장한다. 이를 이용함으로써 구조물의 기본적인 특성 (강성, 강도, 연성 능력)만으로 동적해석 과정을 수행하지 않고도 한계상태 취약성 곡선을 도출할 수 있다. 본 논문의 적용 사례를 통해서 제안된 방법이 지진 취약성 곡선을 얻는데 매우 효율적임을 확인 할 수 있다.

Seismic assessment of transfer plate high rise buildings

  • Su, R.K.L.;Chandler, A.M.;Li, J.H.;Lam, N.T.K.
    • Structural Engineering and Mechanics
    • /
    • 제14권3호
    • /
    • pp.287-306
    • /
    • 2002
  • The assessment of structural performance of transfer structures under potential seismic actions is presented. Various seismic assessment methodologies are used, with particular emphasis on the accurate modelling of the higher mode effects and the potential development of a soft storey effect in the mega-columns below the transfer plate (TP) level. Those methods include response spectrum analysis (RSA), manual calculation, pushover analysis (POA) and equivalent static load analysis (ESA). The capabilities and limitations of each method are highlighted. The paper aims, firstly, to determine the appropriate seismic assessment methodology for transfer structures using these different approaches, all of which can be undertaken with the resources generally available in a design office. Secondly, the paper highlights and discusses factors influencing the response behaviour of transfer structures, and finally provides a general indication of their seismic vulnerability. The representative Hong Kong building considered in this paper utilises a structural system with coupled shear walls and moment resisting portal-frames, above and below the TP, respectively. By adopting the wind load profile stipulated in the Code of Practice on Wind Effects: Hong Kong-1983, all the structural members are sized and detailed according to the British Standards BS8110 and the current local practices. The seismic displacement demand for the structure, when built on either rock or deep soil sites, was determined in a companion paper. The lateral load-displacement characteristic of the building, determined herein from manual calculation, has indicated that the poor ductility (brittle nature) of the mega-columns, due mainly to the high level of axial pre-compression as found from the analysis, cannot be effectively alleviated solely by increasing the quantity of confinement stirrups. The interstorey drift demands at lower and upper zones caused by seismic actions are found to be substantially higher than those arising from wind loads. The mega-columns supporting the TP and the coupling beams at higher zones are identified to be the most vulnerable components under seismic actions.

Development of fragility curves for RC bridges subjected to reverse and strike-slip seismic sources

  • Mosleh, Araliya;Razzaghi, Mehran S.;Jara, Jose;Varum, Humberto
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.517-538
    • /
    • 2016
  • This paper presents a probabilistic fragility analysis for two groups of bridges: simply supported and integral bridges. Comparisons are based on the seismic fragility of the bridges subjected to accelerograms of two seismic sources. Three-dimensional finite-element models of the bridges were created for each set of bridge samples, considering the nonlinear behaviour of critical bridge components. When the seismic hazard in the site is controlled by a few seismic sources, it is important to quantify separately the contribution of each fault to the structure vulnerability. In this study, seismic records come from earthquakes that originated in strike-slip and reverse faulting mechanisms. The influence of the earthquake mechanism on the seismic vulnerability of the bridges was analysed by considering the displacement ductility of the piers. An in-depth parametric study was conducted to evaluate the sensitivity of the bridges' seismic responses to variations of structural parameters. The analysis showed that uncertainties related to the presence of lap splices in columns and superstructure type in terms of integral or simply supported spans should be considered in the fragility analysis of the bridge system. Finally, the fragility curves determine the conditional probabilities that a specific structural demand will reach or exceed the structural capacity by considering peak ground acceleration (PGA) and acceleration spectrum intensity (ASI). The results also show that the simply supported bridges perform consistently better from a seismic perspective than integral bridges and focal mechanism of the earthquakes plays an important role in the seismic fragility analysis of highway bridges.