• 제목/요약/키워드: system deployment

Search Result 878, Processing Time 0.024 seconds

Basic Economic Analysis for Co-production Process of DME and Electricity using Syngas Obtained by Coal Gasification (석탄 가스화를 통한 전력 생산과 DME 병산 공정에 대한 기초 경제성 분석)

  • Yoo, Young Don;Kim, Su Hyun;Cho, Wonjun;Mo, Yonggi;Song, Taekyong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.796-806
    • /
    • 2014
  • The key for the commercial deployment of IGCC power plants or chemical (methanol, dimethyl ether, etc.) production plants based on coal gasification is their economic advantage over plants producing electricity or chemicals from crude oil or natural gas. The better economy of coal gasification based plants can be obtained by co-production of electricity and chemicals. In this study, we carried out the economic feasibility analysis on the process of co-producing electricity and DME (dimethyl ether) using coal gasification. The plant's capacity was 250 MW electric and DME production of 300,000 ton per year. Assuming that the sales price of DME is 500,000 won/ton, the production cost of electricity is in the range of 33~58% of 150.69 won/kwh which is the average of SMP (system marginal price) in 2013, Korea. At present, the sales price of DME in China is approximately 900,000 won/ton. Therefore, there are more potential for lowering the price of co-produced electricity when comparing that from IGCC only. Since the co-production system can not only use the coal gasifier and the gas purification process as a common facility but also can control production rates of electricity and DME depending on the market demand, the production cost of electricity and DME can be significantly reduced compared to the process of producing electricity or DME separately.

Development of Chinese Maritime Related Laws and Status and Interpretation in Legislation System (중국 해양관련 법령의 발전과 입법체계에서의 지위 및 해석)

  • Yang, Hee-Cheol;Lee, Moon-Suk;Park, Seong-Wook;Kang, Ryang
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.427-444
    • /
    • 2008
  • The most important bases of maritime laws in China are laws enacted by Constitution, a legislative institution of National People's Congress and Legislation of NPC Standing Committee. However, in reality, the institution, which become the basis of Chinese marine policy and leads overall maritime affairs, is a State Council of the Chinese central government and many objects of our researches on Chinese marine policy and laws are composed centering on this administration law. Therefore, in understanding Chinese maritime laws, it becomes an important prerequisite to understand relevant laws (statutes), administration law, statutes of local province, mutual authority relationships of these legislative institutions, and interpretation authority regarding laws (statutes). In May 2003, Chinese State Council ratified and declared ${\ll}$Guideline of the national maritime economic development plan${\gg}$ and this is the first macroinstructive document enacted by the Chinese government for promoting maritime economy in integration development. This plan guideline shows very well a new policy and deployment direction of maritime policy in China. China is already striving to lead its maintenance stage of domestic legislation into a new stage under the UN maritime laws agreement system and this is an expression of intention to take national policy regarding the ocean as a new milestone for the national economy through concurrent developments in various fields such as national territory, economy, science technology, national defense, and maritime biology. In this point, Chinese maritime policy and maritime legislation provide lots of indexes of lessons in many parts. In particular, regarding Korea, which has to solve many issues with China in Yellow Sea, East China Sea, and Balhae, we have to realize that we can maximize national interest only with a systematic approach to research on changes of domestic policies and maritime legislation within China. In addition, in understanding Chinese maritime related laws, we have to realize it is an important task to not only understand legislative subjects for mutual creation of order within the entire frame of law orders of China but also to predict and react to direction of policy of Chinese domestic legislation through dynamics of these subjects.

3D Track Models Generation and Applications Based on LiDAR Data for Railway Route Management (철도노선관리에서의 LIDAR 데이터 기반의 3차원 궤적 모델 생성 및 적용)

  • Yeon, Sang-Ho;Lee, Young-Dae
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1099-1104
    • /
    • 2007
  • The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, national development plan, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies national geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we first investigate the LiDAR based researches in advanced foreign countries, then we propose data a generation scheme and an algorithm for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation.

  • PDF

Fuel cell based CHP technologies for residential sector (연료전지와 마이크로 열병합 발전기술)

  • Son, Young Mok
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.251-258
    • /
    • 2016
  • This article reports current status of micro fuel cell-combined heat and power (${\mu}FC$-CHP) systems which utilize both power and heat generated by fuel cells. There are several options for constructing CHP systems and among them, fuel cells are the most useful and their total energy efficiency combining heat and power can reach up to about 90%. Fuel cells are classified as five types based on the electrolyte, but the most suitable fuel cell types for the ${\mu}FC$-CHP system are proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs). ${\mu}FC$-CHP systems have several advantages such as decrease of the transmission-distribution loss, reduced costs of electricity due to distributed power generation, and environmental-friendliness owing to zero emission. The main drawback of the ${\mu}FC$-CHP systems is the high initial investment, however, it keeps decreasing as the technology development reduces production costs. Currently, Japan is the most leading country of the ${\mu}FC$-CHP market, however, Korea tries to expand the market by planning the deployment of 1 million units of ${\mu}FC$-CHP systems and governmental subsidiary supporting of half of the install price. In this report, integration technologies for connecting FC and CHP, and technology trends of leading countries are presented as well.

A Study on the Practical Application of Image Control Point Using Stereo Image Chip (입체 영상칩을 이용한 영상기준점 활용방안에 관한 연구)

  • Kim, Hoon-Jung;Kim, Kam-Lae;Cheong, Hae-Jin;Cho, Won-Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.423-431
    • /
    • 2008
  • The control surveying which aims at identifying the coordinate system of satellite images with that of ground is a repeatedly performed essential process to produce digital ortho - photos and it acts as the main factor to increase the production cost of the photos by duplicated budgets and redundant works when executing the projects for acquiring basic geographical information from high density satellite images. During the experimentation, an application system was established for producing a stereo image chip by the analysis of DPPDB file structure, the stereo image chip was produced with SPOT and IKONOS images, the analysis of 3D modeling accuracy was performed to secure the required accuracy and to present the optimal number and deployment of the control points, and a 3D modeling was performed for new SPOT images and lastly, 3D ground coordinates were extracted by the observation of the same points through the overlapping with the new images. As the results of the research, it is proved that the stereo image chip can be used as the ground controls through the accuracy analysis between the coordinates of the images and the ground, close results were obtained between the coordinates by the ground survey and those by the 3D modeling using new images and the observation of the same points, positional changes were not found during observing the same points, and the research presented the methodology for improving the process of the control survey by showing the availability of the image controls on the stereo image chip instead of the ground controls.

Economic Impact Analysis of Hydrogen Energy Deployment Applying Dynamic CGE Model (동태 CGE 모형을 활용한 수소에너지 보급의 경제적 영향 추정)

  • Bae, Jeong-Hwan;Cho, Gyeong-Lyeob
    • Environmental and Resource Economics Review
    • /
    • v.16 no.2
    • /
    • pp.275-311
    • /
    • 2007
  • Hydrogen energy is emphasized as a substitutable energy of carbon-based energy system in the future, since it is non-depletable and clean energy. Long term vision of Korean government on the national energy system is to promote hydrogen energy by 15% of final energy demand until 2040. This study analyzes economic impacts of hydrogen energy development employing a dynamic CGE model for Korea. Frontier technology such as hydrogen energy is featured as slow diffusion at the initial stage due to the learning effect and energy complementarity. Without government intervention, hydrogen energy would be produced upto 6.5% of final energy demand until 2040. However, if government subsidizes sales price of hydrogen energy by 10%, 20%, and 30%, share of hydrogen energy would increase 9.2%, 15.2%, and 37.7% of final energy demand. This result shows that the slow diffusion problem of hydrogen energy as frontier technology could be figured out by market incentive policy. On the other hand, production levels of transportation sector would increase while growth rate of oil and electricity sectors would decline. Household consumption would be affected negatively since increase of consumption due to the price decrease would be overwhelmed by income reduction owing to the increase of tax. Overall, GDP would not decrease or increase significantly since total production, investment, and export would increase even if household consumption declines.

  • PDF

Integrated Parallelization of Video Decoding on Multi-core Systems (멀티코어 시스템에서의 통합된 비디오 디코딩 병렬화)

  • Hong, Jung-Hyun;Kim, Won-Jin;Chung, Ki-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.7
    • /
    • pp.39-49
    • /
    • 2012
  • Demand for high resolution video services leads to active studies on high speed video processing. Especially, widespread deployment of multi-core systems accelerates researches on high resolution video processing based on parallelization of multimedia software. Previously proposed parallelization approach could improve the decoding performance. However, some parallelization methods did not consider the entropy decoding and others considered only a partial decoding parallelization. Therefore, we consider parallel entropy decoding integrated with other parallel video decoding process on a multi-core system. We propose a novel parallel decoding method called Integrated Parallelization. We propose a method on how to optimize the parallelization of video decoding when we have a multi-core system with many cores. We parallelized the KTA 2.7 decoder with the proposed technique on an Intel i7 Quad-Core platform with Intel Hyper-Threading technology and multi-threads scheduling. We achieved up to 70% performance improvement using IP method.

Highly efficient CMP surveying with ground-penetrating radar utilising real-time kinematic GPS (실시간 GPS를 이용한 고효율 GPR CMP 탐사)

  • Onishi Kyosuke;Yokota Toshiyuki;Maekawa Satoshi;Toshioka Tetsuma;Rokugawa Shuichi
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.59-66
    • /
    • 2005
  • The main purpose of this paper is to describe a highly efficient common mid-point (CMP) data acquisition method for ground-penetrating radar (GPR) surveying, which is intended to widen the application of GPR. The most important innovation to increase the efficiency of CMP data acquisition is continuous monitoring of the GPR antenna positions, using a real-time kinematic Global Positioning System (RTK-GPS). Survey time efficiency is improved because the automatic antenna locating system that we propose frees us from the most time-consuming process-deployment of the antenna at specified positions. Numerical experiments predicted that the data density and the CMP fold would be increased by the increased efficiency of data acquisition, which results in improved signal-to-noise ratios in the resulting data. A field experiment confirmed this hypothesis. The proposed method makes GPR surveys using CMP method more practical and popular. Furthermore, the method has the potential to supply detailed groundwater information. This is because we can convert the spatially dense dielectric constant distribution, obtained by using the CMP method we describe, into a dense physical value distribution that is closely related to such groundwater properties as water saturation.

Consideration Points for application of KOMPSAT Data to Open Data Cube (다목적실용위성 자료의 오픈 데이터 큐브 적용을 위한 기본 고려사항)

  • LEE, Ki-Won;KIM, Kwang-Seob;LEE, Sun-Gu;KIM, Yong-Seung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.62-77
    • /
    • 2019
  • Open Data Cube(ODC) has been emerging and developing as the open source platform in the Committee on Earth Observation Satellites(CEOS) for the Global Earth Observation System of Systems(GEOSS) deployed by the Group on Earth Observations (GEO), ODC can be applied to the deployment of scalable and large amounts of free and open satellite images in a cloud computing environment, and ODC-based country or regional application services have been provided for public users on the high performance. This study first summarizes the status of ODC, and then presents concepts and some considering points for linking this platform with Korea Multi-Purpose Satellite (KOMPSAT) images. For the reference, the main contents of ODC with the Google Earth Engine(GEE) were compared. Application procedures of KOMPSAT satellite image to implement ODC service were explained, and an intermediate process related to data ingestion using actual data was demonstrated. As well, it suggested some practical schemes to utilize KOMPSAT satellite images for the ODC application service from the perspective of open data licensing. Policy and technical products for KOMPSAT images to ODC are expected to provide important references for GEOSS in GEO to apply new satellite images of other countries and organizations in the future.

A New Efficient Private Key Reissuing Model for Identity-based Encryption Schemes Including Dynamic Information (동적 ID 정보가 포함된 신원기반 암호시스템에서 효율적인 키 재발급 모델)

  • Kim, Dong-Hyun;Kim, Sang-Jin;Koo, Bon-Seok;Ryu, Kwon-Ho;Oh, Hee-Kuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.2
    • /
    • pp.23-36
    • /
    • 2005
  • The main obstacle hindering the wide deployment of identity-based cryptosystem is that the entity responsible for creating the private key has too much power. As a result, private keys are no longer private. One obvious solution to this problem is to apply the threshold technique. However, this increases the authentication computation, and communication cost during the key issuing phase. In this paper, we propose a new effi ient model for issuing multiple private keys in identity-based encryption schemes based on the Weil pairing that also alleviates the key escrow problem. In our system, the private key of a user is divided into two components, KGK (Key Description Key) and KUD(Key Usage Desscriptor), which are issued separately by different parties. The KGK is issued in a threshold manner by KIC (Key Issuing Center), whereas the KW is issued by a single authority called KUM (Key Usage Manager). Changing KW results in a different private key. As a result, a user can efficiently obtain a new private key by interacting with KUM. We can also adapt Gentry's time-slot based private key revocation approach to our scheme more efficiently than others. We also show the security of the system and its efficiency by analyzing the existing systems.