• Title/Summary/Keyword: synthetic watershed model

Search Result 20, Processing Time 0.028 seconds

Development of Synthetic Unit Hydrograph for Estimation of Runoff in Ungauged Watershed (미계측 유역의 유출량 산정을 위한 합성단위도 개발)

  • Choi, Yong Joon;Kim, Joo Cheol;Jeong, Dong Kug
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.532-539
    • /
    • 2010
  • The synthetic unit hydrograph is developed and verified using Nash model and characteristic velocities considering geomorphological dispersion in this present study. Application watersheds are selected 5 subwatersheds of Bocheong basin. The mean and variance of hillslope and stream path length are estimated in each watershed with GIS. Characteristic velocities are calculated using estimated path lengths and moment characteristics of rainfall-runoff data. Characteristic velocities of random devised 7 ungauged watersheds are estimated through regional analysis of chracteristic velocities in guaged watershed. And Nash model parameters and IUH are derived using characteristic velocities and path length in the gauged and ungauged watershed. The result to compare of IUH about gauged watershed and random devised ungauged watershed in application watershed presents coherently hydrologic response characteristics that peak discharge is reduced and peak time is extended. In conclusion, Developed synthetic unit hydrograph in this study expects that it is useful method to estimate runoff discharge for managing of water pollution in ungauged watershed.

The Development of Synthetic Unit Hydrograph Suitable to the Hydrologic Characteristics in Korea (국내 수문특성에 적합한 합성단위도의 개발)

  • Jeong, Seong-Won;Mun, Jang-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.627-640
    • /
    • 2001
  • Generally, the synthetic unit hydrograph method is presented to estimate the design flood in the ungaged watershed. However, due to the lack of rainfall-runoff data, the models developed in other countries such as U.S.A. and Japan have been widely used in Korea. Therefore, it may be essential to develope the rainfall-runoff model suitable for the hydrological char-acteristics in Korea. In this study, the representative unit hydrographs are derived from rainfall-runoff data at 19 basins in Selma-Cheon and 3-IHP experimental watersheds using ridge-regression method and Nash model. And a new synthetic unit hydrograph for Korea is suggested by integrating the described results and previous studies on unit hydrograph. The newly developed method is represented as two regression forms with three independent variables of watershed area, channel length, and channel slope by multiple regression analysis is carried out for each watershed, the coefficients of determination are not improved in all cases compared out for each watershed, the coefficients of determination are not improved n all cased the synthetic unit hydrograph for each watershed. Therefore, when the new method is applied to some watersheds, the result analyzed for all data has to be used.

  • PDF

Estimation of Design Flood Considering Time Distribution of Rainfall (강우 시간분포를 고려한 설계홍수량산정)

  • Park, Jae-Hyun;Ahn, Sang-Jin;Hahm, Chang-Hahk;Choi, Min-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1191-1195
    • /
    • 2006
  • Now days, heavy storm occur to be continue. It is hard to use before frequency based on flood discharge for decision that design water pocket structure. We need to estimation of frequency based on flood discharge on the important basin likely city or basin that damage caused by flood recurrence. In this paper flood discharge calculated by Clark watershed method and SCS synthetic unit hydrograph method about upside during each minute of among time distribution method of rainfall, Huff method choosing Bocheong Stream basin that is representative basin of International Hydrologic Project (IHP) about time distribution of rainfall that exert big effect at flood discharge estimate to research target basin because of and the result is as following. Relation between probability flood discharge that is calculated through frequency analysis about flood discharge data and rainfall - runoff that is calculated through outward flow model was assumed about $48.1{\sim}95.9%$ in the case of $55.8{\sim}104.0%$, SCS synthetic unit hydrograph method in case of Clark watershed method, and Clark watershed method has big value overly in case of than SCS synthetic unit hydrograph method in case of basin that see, but branch of except appeared little more similarly with frequency flood discharge that calculate using survey data. In the case of Critical duration, could know that change is big area of basin is decrescent. When decide time distribution type of rainfall, apply upside during most Huff 1-ST because heavy rain phenomenon of upsides appears by the most things during result 1-ST about observation recording of target area about Huff method to be method to use most in business, but maximum value of peak flood discharge appeared on Huff 3-RD too in the case of upside, SCS synthetic unit hydrograph method during Huff 3-RD incidental of this research and case of Clark watershed method. That is, in the case of Huff method, latitude is decide that it is decision method of reasonable design floods that calculate applying during all $1-ST{\sim}4-TH$.

  • PDF

A STUDY ON THE PARAMETER ESTIMATION OF SNYDER-TYPE SYNTHETIC UNIT-HYDROGRAPH DEVELOPMENT IN KUM RIVER BASIN

  • Jeong, Sang-man;Park, Seok-Chae;Lee, Joo-Heon
    • Water Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.219-229
    • /
    • 2001
  • Synthetic unit hydrograph equations for rainfall run-off characteristics analysis and estimation of design flood have long and quite frequently been presented, the Snyder and SCS synthetic unit hydrograph. The major inputs to the Snyder and SCS synthetic unit hydrograph are lag time and peak coefficient. In this study, the methods for estimating lag time and peak coefficient for small watersheds proposed by Zhao and McEnroe(1999) were applied to the Kum river basin in Korea. We investigated lag times of relatively small watersheds in the Kum river basin in Korea. For this investigation the recent rainfall and stream flow data for 10 relatively small watersheds with drainage areas ranging from 134 to 902 square kilometers were gathered and used. 250 flood flow events were identified along the way, and the lag time for the flood events was determined by using the rainfall and stream flow data. Lag time is closely related with the basin characteristics of a given drainage area such as channel length, channel slope, and drainage area. A regression analysis was conducted to relate lag time to the watershed characteristics. The resulting regression model is as shown below: ※ see full text (equations) In the model, Tlag is the lag time in hours, Lc is the length of the main river in kilometers and Se is the equivalent channel slope of the main channel. The coefficient of determinations (r$^2$)expressed in the regression equation is 0.846. The peak coefficient is not correlated significantly with any of the watershed characteristics. We recommend a peak coefficient of 0.60 as input to the Snyder unit-hydrograph model for the ungauged Kum river watersheds

  • PDF

Calibrating a Rainfall-Runoff Model Using SCE-UA method (SCE-UA법을 이용한 수문모형의 매개변수 추정)

  • 강민구;박승우;박창언
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.359-365
    • /
    • 1998
  • A global optimization method known as the Shuffled Complex Evolution method from the University of Arizona(SCE-UA) was used for calibrating a Tank model. The model was calibrated with error-free synthetic data, and the SCE-UA method was found to effectively search optimal parameters. Historical data from an agricultural watershed was used to calibrate and validate the model parameters. The simulated results were in good agreement with the observed.

  • PDF

Accumulation of Streamflow in Complex Topography by Digital Terrain Models (복잡한 지형에 있어서 디지털 지형모델을 이용한 유출량 계산)

  • 전무갑
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.47-54
    • /
    • 1996
  • 본 연구에서는 지표면유출과 중간유출의 수문학적과정을 함께 모의발생 시키는 합성 유역모델이 제시되었다. 본 모델은 디지털지형모델과 상호 연결되도록 하였으며 지형이 복잡한 지역에서도 유출이 시간과 공간적으로 누가계산되어 이 분야의 조사연구에 필요한 정보를 제공할 수 있다. 본모델을 이용 유역의 불투수층 위에 분포해있는 토양의 중간계층과 토양수분의 계산 및 침투/용탈의 과정을 모의 발생시킬 수 있다.

  • PDF

Derivation of rainfall threshold for urban flood warning based on the dual drainage model simulation

  • Dao, Duc Anh;Kim, Dongkyun;Tran, Dang Hai Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.141-141
    • /
    • 2021
  • This study proposed an equation for Rainfall Threshold for Flood Warning (RTFW) for urban areas based on computer simulations. First, a coupled 1D-2D dual-drainage model was developed for nine watersheds in Seoul, Korea. Next, the model simulation was repeated for a total of 540 combinations of the synthetic rainfall events and watershed imperviousness (9 watersheds × 4 NRCS Curve Number (CN) values × 15 rainfall events). Then, the results of the 101 simulations with the critical flooded depth (0.25m-0.35m) were used to develop the equation that relates the value of RTFW to the rainfall event temporal variability (represented as coefficient of variation) and the watershed Curve Number. The results suggest that 1) the rainfall with greater temporal variability causes critical floods with less amount of total rainfall; and that 2) the greater imperviousness requires less rainfall to have critical floods. For validation, the proposed equation was applied for the flood warning system with two storm events occurred in 2010 and 2011 over 239 watersheds in Seoul. The results of the application showed high performance of the warning system in issuing the flood warning, with the hit, false and missed alarm rates at 68%, 32% and 7.4% respectively for the 2010 event and 49%, 51% and 10.7% for the event in 2011.

  • PDF

A Study on the Simulation of Monthly Discharge by Markov Model (Markov모형에 의한 월유출량의 모의발생에 관한 연구)

  • 이순혁;홍성표
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.4
    • /
    • pp.31-49
    • /
    • 1989
  • It is of the most urgent necessity to get hydrological time series of long duration for the establishment of rational design and operation criterion for the Agricultural hydraulic structures. This study was conducted to select best fitted frequency distribution for the monthly runoff and to simulate long series of generated flows by multi-season first order Markov model with comparison of statistical parameters which are derivated from observed and sy- nthetic flows in the five watersheds along Geum river basin. The results summarized through this study are as follows. 1. Both two parameter gamma and two parameter lognormal distribution were judged to be as good fitted distributions for monthly discharge by Kolmogorov-Smirnov method for goodness of fit test in all watersheds. 2. Statistical parameters were obtained from synthetic flows simulated by two parameter gamma distribution were closer to the results from observed flows than those of two para- meter lognormal distribution in all watersheds. 3. In general, fluctuation for the coefficient of variation based on two parameter gamma distribution was shown as more good agreement with the observed flow than that of two parameter lognormal distribution. Especially, coefficient of variation based on two parameter lognormal distribution was quite closer to that of observed flow during June and August in all years. 4. Monthly synthetic flows based on two parameter gamma distribution are considered to give more reasonably good results than those of two parameter lognormal distribution in the multi-season first order Markov model in all watersheds. 5. Synthetic monthly flows with 100 years for eack watershed were sjmulated by multi- season first order Markov model based on two parameter gamma distribution which is ack- nowledged to fit the actual distribution of monthly discharges of watersheds. Simulated sy- nthetic monthly flows may be considered to be contributed to the long series of discharges as an input data for the development of water resources. 6. It is to be desired that generation technique of synthetic flow in this study would be compared with other simulation techniques for the objective time series.

  • PDF

Estimation of Synthetic Unit Hydrograph by Cluster Analysis Using Geomorphic Characteristics of Mid-size Watershed (지형학적 인자에 따라 군집화된 중소규모유역의 합성단위도법 제시)

  • Kim, Jin Gyeom;Kim, Jong min;Kang, Boosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.439-449
    • /
    • 2016
  • The methodology of synthetic unit hydrograph using geomorphic characteristics was suggested. Six geomorphic components over 19 watersheds were used to estimate synthetic unit hydrograph and the test watersheds were classified into two groups on the basis of the area of $200km^2$. The regression formulas between standardized geomorphic characteristics for each group and peak quantities of specific streamflow and time of representative unit hydrograph were suggested and the Nash and the Clark unit hydrographs were derived. For verifying the derived unit hydrographs, the resulting hydrographs were compared with the ones using the existing Clark unit hydrographs based on the empirical parameter estimation for the 145 storm events during 2010 to 2011 for the additional six watersheds. The results showed the relatively higher performance over the existing synthetic unit hydrograph methods, which could be a contribution to the hydrologic estimation in ungauged watersheds.

A Proposal of Unit Hydrograph Using Statistical Analysis in Oedo Stream, Jeju (통계적 기법을 적용한 외도천의 단위유량도 제안)

  • Lee, Jun-Ho;Yang, Sung-Kee;Jung, Woo-Yul
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.393-401
    • /
    • 2015
  • Rainfall-runoff model of Jeju Oedo Stream was used to compute the optimal unit hydrograph by HEC-HMS model that reflecting on watershed characteristics. Each rainfall event was comparatively analyzed with the actual flow measurement using Clark, Snyder and SCS synthetic methods for derived unit hydrograph. Subsequently, the null hypothesis was established as p-value for peak flow and peak time of each unit hydrograph by one-way ANOVA(Analysis of variance) was larger than significance level of 0.05. There was no significant difference in peak flow and peak time between different methods of unit hydrograph. As a result of comparing error rate with actual flow measurement data, Clark synthetic unit graph best reflected in Oedo Stream as compared to other methods, and error rate of Clark unit hydrograph was 0.02~1.93% and error rate at peak time was 0~2.74%.