• Title/Summary/Keyword: synthetic spectra

Search Result 127, Processing Time 0.027 seconds

CALCULATION OF TELLURIC ABSORPTION SPECTRA (지구 대기 흡수선 스펙트럼 계산)

  • Jeong, Gwanghui;Han, Inwoo;Lee, Byeong-Cheol
    • Publications of The Korean Astronomical Society
    • /
    • v.29 no.3
    • /
    • pp.35-44
    • /
    • 2014
  • In ground-based astronomical spectroscopic observations, there are many telluric absorption lines that are laid on the spectra of celestial objects. To study the physical properties of the celestial objects with these contaminated spectra, the telluric lines should be removed. A conventional method for removing the telluric lines is using the standard stellar spectrum as telluric line. In this paper, we introduce a technique to calculate synthetic telluric spectra and use them to remove telluric lines from a spectrum of a celestial object. We used Line-by-Line Radiative Transfer Model (LBLRTM) for calculating a synthetic spectrum and selected Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) model as atmospheric model. We apply our method to some spectra obtained by Bohyunsan Observatory Echelle Spectrograph (BOES) to show that the telluric lines are well removed from the observed spectra by our model within an accuracy of 2% which is close to the 1-sigma rms of the original spectra.

Generating Synthetic Raman Spectra of DMMP and 2-CEES by Mathematical Transforms and Deep Generative Models (수학적 변환과 심층 생성 모델을 활용한 DMMP와 2-CEES의 모의 라만 분광 생성)

  • Sungwon Park;Boseong Jeong;Hongjoong Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.422-430
    • /
    • 2023
  • To build an automated system detecting toxic chemicals from Raman spectra, we have to obtain sufficient data of toxic chemicals. However, it usually costs high to gather Raman spectra of toxic chemicals in diverse situations. Tackling this problem, we develop methods to generate synthetic Raman spectra of DMMP and 2-CEES without actual experiments. First, we propose certain mathematical transforms to augment few original Raman spectra. Then, we train deep generative models to generate more realistic and diverse data. Analyzing synthetic Raman spectra of toxic chemicals generated by our methods through visualization, we qualitatively verify that the data are sufficiently similar to original data and diverse. For conclusion, we obtain a synthetic dataset of DMMP and 2-CEES with the proposed algorithm.

Determining the stellar parameters of solar-like stars using synthetic spectra

  • Kang, Won-Seok;Lee, Sang-Gak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.151.2-151.2
    • /
    • 2011
  • IGRINS (Immersion GRating INfrared Spectrometer) will provide the spectra with high-resolution and an instantaneous spectral coverage of H and K band in NIR region. Therefore, it is expected that the wide coverage of wavelength would make a production of an extensive NIR high-resolution spectra of standard stars as a prior program of IGRINS. As a counter part of these NIR spectra, we have planned to obtain the high-resolution spectra of those standard stars in optical band. These optical high-resolution spectra would give us an opportunity to produce the library of high-resolution stellar spectra covering from optical to NIR band, and to confirm the method to determine the stellar parameters and chemical abundances from the NIR high-resolution spectra. Before using the NIR high-resolution spectra, we have tested the method to determine the stellar parameters by comparing between the observed spectra and the synthetic spectra in optical band. In order to make the synthetic spectra, we have used the Kurucz ATLAS9 model grids and the SYNTH code described by Fiorella Castelli (http://wwwuser.oat.ts.astro.it/castelli/). For the cross-check against the parameters that would be derived from the NIR spectra, the stellar parameters such as effective temperature and surface gravity were determined using the optical spectra of the solar-like stars, as preliminary results.

  • PDF

Displacements, damage measures and response spectra obtained from a synthetic accelerogram processed by causal and acausal Butterworth filters

  • Gundes Bakir, Pelin;Richard, J. Vaccaro
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.409-430
    • /
    • 2006
  • The aim of this study is to investigate the reliability of strong motion records processed by causal and acausal Butterworth filters in comparison to the results obtained from a synthetic accelerogram. For this purpose, the fault parallel component of the Bolu record of the Duzce earthquake is modeled with a sum of exponentially damped sinusoidal components. Noise-free velocities and displacements are then obtained by analytically integrating the synthetic acceleration model. The analytical velocity and displacement signals are used as a standard with which to judge the validity of the signals obtained by filtering with causal and acausal filters and numerically integrating the acceleration model. The results show that the acausal filters are clearly preferable to the causal filters due to the fact that the response spectra obtained from the acausal filters match the spectra obtained from the simulated accelerogram better than that obtained by causal filters. The response spectra are independent from the order of the filters and from the method of integration (whether analytical integration after a spline fit to the synthetic accelerogram or the trapezoidal rule). The response spectra are sensitive to the chosen corner frequency of both the causal and the acausal filters and also to the inclusion of the pads. Accurate prediction of the static residual displacement (SRD) is very important for structures traversing faults in the near-fault regions. The greatest adverse effect of the high pass filters is their removal of the SRD. However, the noise-free displacements obtained by double integrating the synthetic accelerogram analytically preserve the SRD. It is thus apparent that conventional high pass filters should not be used for processing near-fault strong-motion records although they can be reliably used for far-fault records if applied acausally. The ground motion parameters such as ARIAS intensity, HUSID plots, Housner spectral intensity and the duration of strong-motion are found to be insensitive to the causality of filters.

Stellar Parameters of M dwarfs determined by the long wavelength optical part spectra

  • Kang, Won-Seok;Lee, Sang-Gak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.153.1-153.1
    • /
    • 2011
  • For the stars cooler than the Sun, it is difficult to determine the stellar parameters and chemical abundances because of the strong molecular lines in the optical region. Therefore the NIR high-resolution spectra, such as those obtained by IGRINS would be a solution to determine the stellar parameters for late-type stars, such as M dwarfs. As using the NIR high-resolution spectra, we are expecting that it would be more reliable to compare observed spectra with synthetic spectra for the stellar parameters. In order to confirm the method by using high-resolution spectra in NIR band, it should be cross-checked against the stellar parameters from optical high-resolution spectra. We have derived the stellar parameters of M dwarfs using the synthetic spectra in the long wavelength region of the optical spectra (over 8000 $\bar{A}$), which is relatively less contaminated by molecular lines as well as telluric lines.

  • PDF

Strong Haze Influence on the 3-micron Emission Features of Saturn

  • Kim, Sang Joon;Park, Jaekyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.44.3-44.3
    • /
    • 2019
  • Since the detection of 3.3-micron PAH (polycyclic aromatic hydrocarbon) and 3.4-micron aliphatic hydrocarbon features in the spectra of Titan (Bellucci et al. 2009; Kim et al. 2011) and Saturn (Kim et al. 2012), respectively, the 3.3-micron feature of gaseous CH4 has been thought to be still the important spectral feature in the 3-micron absorption structures of Titan and Saturn. However, the analyses of the 3.3-and 3.4-micron emission structures of Saturn revealed that the influence of the gaseous CH4 on the structures is rather minimal (Kim et al. 2019). We present synthetic spectra of gaseous CH4, and the PAH and aliphatic haze particles in order to show the degree of influence of their spectra on the 3.3-and 3.4-micron emission structures of Saturn, and we compare these synthetic spectra with currently available observations. We constructed these synthetic spectra using newly developed radiative transfer equations. These equations are able to address detailed radiative processes in the atmospheres containing various gases and haze particles. We expect these radiative transfer equations can also be widely applied to the investigation of radiative transfer processes and the analyses of the spectra of celestial objects such as the Earth, the Moon, planets, and interstellar nebulae.

  • PDF

DOUBLE STARS AS TRACERS OF TINY STRUCTURES IN THE INTERSTELLAR MEDIUM

  • MORABBI, SOMAYEH;MIRTORABI, MOHAMMAD TAGHI
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.89-91
    • /
    • 2015
  • Observed spectra of stars around the Sun have indicated that the Sun is located in a gas cavity, extending to 100pc. This gas cavity is called the "Local Bubble". The density of the interstellar medium (ISM) in the local bubble is about one tenth that of the average for the ISM in the Milky Way. Furthermore, some structures such as gas planes and strings in the local bubble are probably the result of supernovae. These, due to their low temperatures, can not be observed in the visible and infrared. The only way to do so is to measure the spectra of nearby stars so that the light of stars passing through the local bubble is absorbed by existing gas and the resulting spectral lines from absorption can be measured. In this study, we use binary stars to trace the local bubble structures through lines such as the Na I Doublet. First, we determined the observed spectral lines of stars by HARPS and FEROS echelle spectrographs. Then, we made synthetic spectra with the ATLAS9 code. Finally, the difference between the observational and synthetic spectra confirms the existence of the Na I Doublet in the local ISM.

Near-IR Spectral Features of Haze Particles in the Atmosphere of Titan

  • Kim, Sang Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.62.1-62.1
    • /
    • 2013
  • The Cassini/Visual Infrared Mapping Spectrometer (VIMS) observed the sun through the atmosphere of Titan, and provided vertically-resolved 63 spectra from 49 km to 987 km for the 1 - 5 micron range (Bellucci, 2008). Bellucci et al. (2009) analyzed selected spectral ranges where the band absorptions of $CH_4$ and CO are strong by constructing synthetic spectra including $CH_4$ and CO lines, but without including haze absorptions in their synthetic spectra. Kim et al. (2011) and Sim et al. (2013) were able to extract detailed spectral features of fundamental (Dv = 1) and overtone (Dv = 2) bands of the haze from the VIMS spectra by excluding the adjacent influences of strong $CH_4$ absorptions using a radiative transfer program, which includes effects of absorption and emission of lines of these molecules, and absorption and scattering of haze particles. In this presentation, we extend our detailed analyses to other remaining wavelengths in order to provide the spectral characteristics of the Titanian haze for the entire 1 - 5 micron range and to identify any additional haze spectral features and an unidentified feature near 4.3 microns reported by Bellucci et al. (2009).

  • PDF

The BINSYN Program Package

  • Linnell, Albert P.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.123-129
    • /
    • 2012
  • The BINSYN program package, recently expanded to calculate synthetic spectra of cataclysmic variables, is being further extended to include synthetic photometry of ordinary binary stars in addition to binary stars with optically thick accretion disks. The package includes a capability for differentials correction optimization of eclipsing binary systems using synthetic photometry.

Near-IR Radiative Transfer Process for the Hazy Atmosphere of Titan

  • Kim, Sang-Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.44.2-44.2
    • /
    • 2015
  • Radiative transfer programs have been developed to simulate near-IR spectra of Titan. The formalism of the radiative transfer calculations includes the absorption and emission lines of $CH_4$, $C_2H_2$, $C_2H_6$, and HCN, and continua produced by Titanian haze particles. Absorption and scattering of sunlight by haze particles are considered by employing a two-stream approximation and a spherical-shell model for the atmospheric layers of Titan. Various constraints on the radiative transfer calculations for generating synthetic spectra will be discussed and presented. Several examples of comparisons between the synthetic spectra and recent spectral observations of Titan will also be presented.

  • PDF