• Title/Summary/Keyword: synthetic simulated tumor

Search Result 1, Processing Time 0.018 seconds

Three-Dimensional Volume Assessment Accuracy in Computed Tomography Using a Phantom (모형물을 이용한 전산화 단층 촬영에서 3차원적 부피측정의 정확성 평가)

  • Kim, Hyun-Su;Wang, Ji-Hwan;Lim, Il-Hyuk;Park, Ki-Tae;Yeon, Seong-Chan;Lee, Hee-Chun
    • Journal of Veterinary Clinics
    • /
    • v.30 no.4
    • /
    • pp.268-272
    • /
    • 2013
  • The purpose of this study was to assess the effects of reconstruction kernel, and slice thickness on the accuracy of spiral CT-based volume assessment over a range of object sizes typical of synthetic simulated tumor. Spiral CT scanning was performed at various reconstruction kernels (soft tissue, standard, bone), and slice thickness (1, 2, 3 mm) using a phantom made of gelatin and 10 synthetic simulated tumors of different sizes (diameter 3.0-12.0 mm). Three-dimensional volume assessments were obtained using an automated software tool. Results were compared with the reference volume by calculating the percentage error. Statistical analysis was performed using ANOVA and setting statistical significance at P < 0.05. In general, smaller slice thickness and larger sphere diameters produced more accurate volume assessment than larger slice thickness and smaller sphere diameter. The measured volumes were larger than the actual volumes by a common factor depending on slice thickness; in 100HU simulated tumors that had statistically significant, 1 mm slice thickness produced on average 27.41%, 2 mm slice thickness produced 45.61%, 3 mm slice thickness produced 93.36% overestimates of volume. However, there was no statistically significant difference in volume error for spiral CT scans taken with techniques where only reconstruction kernel was changed. These results supported that synthetic simulated tumor size, slice thickness were significant parameters in determining volume measurement errors. For an accurate volumetric measurement of an object, it is critical to select an appropriate slice thickness and to consider the size of an object.