• Title/Summary/Keyword: synthetic resins

Search Result 99, Processing Time 0.031 seconds

Arsenic Removal from Water Using Various Adsorbents: Magnetic Ion Exchange Resins, Hydrous Ion Oxide Particles, Granular Ferric Hydroxide, Activated Alumina, Sulfur Modified Iron, and Iron Oxide-Coated Microsand

  • Sinha, Shahnawaz;Amy, Gary;Yoon, Yeo-Min;Her, Nam-Guk
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.165-173
    • /
    • 2011
  • The equilibrium and kinetic adsorption of arsenic on six different adsorbents were investigated with one synthetic and four natural types (two surface and two ground) of water. The adsorbents tested included magnetic ion exchange resins (MIEX), hydrous ion oxide particles (HIOPs), granular ferric hydroxide (GFH), activated alumina (AA), sulfur modified iron (SMI), and iron oxide-coated microsand (IOC-M), which have different physicochemical properties (shape, charge, surface area, size, and metal content). The results showed that adsorption equilibriums were achieved within a contact period of 20 min. The optimal doses of adsorbents determined for a given equilibrium concentration of $C_{eq}=10\;{\mu}g/L$ were 500 mg/L for AA and GFH, 520-1,300 mg/L for MIEX, 1,200 mg/L for HIOPs, 2,500 mg/L for SMI, and 7,500 mg/L for IOC-M at a contact time of 60 min. At these optimal doses, the rate constants of the adsorbents were 3.9, 2.6, 2.5, 1.9, 1.8, and 1.6 1/hr for HIOPs, AA, GFH, MIEX, SMI, and IOC-M, respectively. The presence of silicate significantly reduced the arsenic removal efficiency of HIOPs, AA, and GFH, presumably due to the decrease in chemical binding affinity of arsenic in the presence of silicate. Additional experiments with natural types of water showed that, with the exception of IOC-M, the adsorbents had lower adsorption capacities in ground water than with surface and deionized water, in which the adsorption capacities decreased by approximately 60-95%.

Continuous Ion Exchange Characteristics of Ni, Co and Ag Ions in Acidic-Oxidizing Conditions (산성-산화성 분위기에서 니켈(Ni), 코발트(Co) 및 은(Ag) 이온의 연속식 이온교환 특성)

  • Kim, Young H.;Yang, Hyun S.;Kim, Woong K.
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.218-224
    • /
    • 1999
  • Continuous ion exchange characteristics of the synthetic coolant contained Ni, Co and Ag ions of low concentration in acidic-oxidizing conditions have been studied to suggest the guideline for the optimum operation of mixed-bed demincralizer during the shutdown period of a pressurized water reactor (PWR). In the effect of the form of cation resins on the removal capacity of metal ions, the performance of a $H^+$-form resin was about 6% higher than that of a $Li^+$-form resin. Mixed-bed of cation and anion resins in comparison with nonmixed-bed of them, had no affected on the removal capacity of metal ions but very slightly increased the slope of breakthrough curves of metal ions. In the effect related to acidic-oxidizing conditions of the coolant, the addition of boric acid very slightly decreased the slope of breakthrough curves of metal ions, while the addition of hydrogen peroxide slightly decreased the removal capacity of metal ions.

  • PDF

A Study on Characteristics of Exposure to Tetrahydrofuran of Manufacturing and Handling Workers (테트라하이드로퓨란 제조 및 취급 근로자의 노출특성에 관한 연구)

  • Chio, Ho Chun;Hong, Jwa Ryung;Lee, Gye Young;Kim, Doo Ho;Park, Chung Yill
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.3
    • /
    • pp.156-161
    • /
    • 2011
  • Objectives: Tetrahydrofuran (THF) is a colorless, water-miscible organic liquid with low viscosity at standard temperature and pressure. THF has been used as a solvent and a precursor for various syntheses of polymers. However, THF is known to irritate to the eyes, skin and mucus membranes. Overexposure by inhalation, ingestion or skin contact may produce nausea, dizziness, headaches, respiratory irritation and possible skin burns. The purpose of this study is to evaluate of the worker exposure and characteristics of workers in the workplaces that use or manufacture THF. Methods: Sixteen factories in Korea, which manufacture or use THF, were selected for this study and a total of 130 air samples including 104 time-weighted average (TWA) samples and 26 short-term exposure limit (STEL) samples, were collected. Air samples were collected with charcoal tube (100mg/50mg) and analyzed by gas chromatograph/flame ionization detector(GC/FID). Results: The TWA concentration of THF was 16.05ppm (GM) at PS script printing, 2.32ppm (GM) at PVC stabilizer, 1.03ppm (GM) at Lithium triethylborohydride, 0.63ppm (GM) at Polytetramethylene ether glycol(PTMEG), 0.42ppm (GM) at Manufacturing THF, 0.13ppm (GM) at Glue and 0.12ppm (GM) at synthetic rubber/resins. Two out of sampes for PS script printing exceeded 50ppm as 8-hour exposure limit of MOEL. The short term exposure to THF was 54.77ppm (GM) at PS script printing, 17.10ppm (GM) at PTMEG, 13.76ppm (GM) at Manufacturing THF, 2.86ppm (GM) at Lithium triethylborohydride, 0.87ppm (GM) at synthetic rubber/resins and 0.13ppm (GM) Glue. We found that the highest exposure process for both the TWA and STEL samples was PS script process. Two samples exceeded 100ppm as short term exposure limit of Ministry of Employment and Labor(MOEL). Conclusions: Characteristic of STEL concentration for THF is considerably different from TWA concentration in workplaces because workers could exposure high concentration of THF in a moment when they work irregularly schedule. So exposure controls for momentary works have to be prepared, and considered the skin absorption and inhale of THF.

Study on the Development and Property of Epoxy Putty with Excellent Low Shrinkage and Cutting Force Using Mercaptan Type and Diamine Type (Mercaptan계와 Diamine계를 이용한 저수축·절삭력이 우수한 Epoxy Putty의 개발 및 물성에 관한 연구)

  • Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of Adhesion and Interface
    • /
    • v.16 no.4
    • /
    • pp.137-145
    • /
    • 2015
  • This study aimed to develop epoxy putty as a multi-purpose connection and restoration material that can be used for material-specific restoration work such as metal, wood, ceramics, earthenware and stone artifacts by replacing synthetic resins currently being used for preservation treatment of cultural assets. Existing synthetic resins have the issue of cutting force resulting from high strength, deflection resulting from long hardening time, contaminating the surface of artifacts through staining on tools or gloves and need for re-treatment resulting from material discoloration. Accordingly, paste type restoration material most widely being used in the field of cultural assets preservation treatment was selected and examined the property to select it as an object of comparison. Based on such process, epoxy putty was developed according to the kind of agent, hardener and filler. For the purpose of solving the issues of existing material and allowing the epoxy putty developed to have similar property, property experiments were conducted by selecting agents and hardeners with different characteristics and conditions. The study findings showed that both kinds are paste type that improved work convenience and deflection issue as a result of their work time of within 5~10 minutes that are about 3~10 times shorter than that of existing material. In regards to wear rate for increasing cutting force, it improved by about 3 times, thereby allowing easy molding. For the purpose of improving the issue of surface contamination that occurs during work process, talc and micro-ballon were added as filler to reduce the issue of stickiness and staining on hand. Furthermore, a multi-purpose restoration material with low shrinkage, low discoloration and high cutting force was developed with excellent coloring, lightweight and cutting force features.

Investigation on the Safety of Biodegradable Synthetic Resins for Food (식품용 생분해성 합성수지제의 안전성 조사)

  • Hee-Jeong Yun;Jong-Sup Jeon;Young-Su Kim;Sung-Hee Park;Seo-Hyeon Song;Eun-Jung Ku;Sun-Young Chae;Myung-Jin Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.95-101
    • /
    • 2024
  • In this study, we investigated the migration level of items specified in the Korean Standards and Specifications for Utensils, Containers, and Packages (Ministry of Food and Drug Safety Notification) for 50 utensils and hygiene products made of biodegradable resins. Our results revealed that one Polylactide (PLA) baby tableware contained 20 mg/L in consumption of potassium permanganate, exceeding the standard of 10 mg/L or less. In all other samples, formaldehyde, lead (Pb), and arsenic (As) levels could be considered very safe and remained below the standard. Moreover, we tested the PLA baby tablewares (n = 21) for migration into a food simulant (4% v/v acetic acid) upon repeated elution at 100℃ for 30 min or UV irradiation for 2 h. We detected increased formaldehyde and As amounts at the repeated 100℃ treatment for 30 min compared to those upon repeated UV irradiation. However, the migration level was markedly low under both conditions. Furthermore, the Estimated Daily Intake (EDI) calculated on an infant-to-child basis from the formaldehyde and As migration at 100℃ for 30 min in the PLA sample was at the maximum value, i.e., 6.0×10-4 mg/kg b.w./day and 1.3×10-1 ㎍/kg b.w./day, corresponding to 0.40% and 10.42% of the Tolerable Daily Intake (TDI, 0.15 mg/kg b.w./day) and Provisional Tolerable Weekly Intake (PTWI, 9.0 ㎍/kg b.w./week), respectively. Therefore, in this study, we confirmed that biodegradable synthetic resins are safe to use for food.

Study on the Property and Applicability of the Bisphenol-A Type Epoxy Putty According to the Mix of Filler (개발된 Bisphenol-A계 Epoxy Putty의 충전제 배합에 따른 물성 및 적용성에 관한 연구)

  • Wi, Koang-Chul;Oh, Seung-Jun
    • Journal of Conservation Science
    • /
    • v.32 no.4
    • /
    • pp.459-469
    • /
    • 2016
  • The goal of this study was to examine property changes induced by the choice of filler used with an epoxy resin that was developed in 2014 to restore cultural assets and consider the applicability of the resin as a restorative agent. The properties of putty mixed with 9 types of fillers and as-developed resins were compared with those of existing materials with regard to stability, superiority and applicability. The potential of the putty as an alternative material was also examined. The materials produced the best adhesiveness, color change and hardness results when mixed with lime. Micro balloon produced the best wear rates and hardening times, while diatomite produced the best tensile and compressive strengths. A plaster and white mineral pigment mixture produced the best specific gravity. Every material except for lime exhibited about 2.5-20 times higher wear rates than the existing material, which is thought to exhibit an excellent cutting force. The hardening time was enhanced by about 0.5-9 times to improve convenience. The stability of the relic was also ensured by improving hand staining without any shrinkage or deformation. The material exhibited about 0.5-27 times less yellowing. Thus, it is thought to be a material that can reduce property changes and reduce the degree of relic fatigue which occurs during reprocessing and sense of difference from relic.

Solution-processed Dielectric and Quantum Dot Thin Films for Electronic and Photonic Applications

  • Jeong, Hyeon-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.37-37
    • /
    • 2010
  • Silicate-silsesquioxane or siloxane-silsesquioxane hybrid thin films are strong candidates as matrix materials for ultra low dielectric constant (low-k) thin films. We synthesized the silicate-silsesquioxane hybrid resins from tetraethoxyorthosilicate (TEOS) and methyltrimethoxysilane (MTMS) through hydrolysis and condensation polymerization by changing their molar ratios ([TEOS]:[MTMS] = 7:3, 5:5, and 3:7), spin-coating on Si(100) wafers. In the case of [TEOS]:[MTMS] 7:3, the dielectric permittivity value of the resultant thin film was measured at 4.30, exceeding that of the thermal oxide (3.9). This high value was thought to be due to Si-OH groups inside the film and more extensive studies were performed in terms of electronic, ionic, and orientational polarizations using Debye equation. The relationship between the mechanical properties and the synthetic conditions of the silicate-silsesquioxane precursors was also investigated. The synthetic conditions of the low-k films have to be chosen to meet both the low orientational polarization and high mechanical properties requirements. In addition, we have investigated a new solution-based approach to the synthesis of semiconducting chalcogenide films for use in thin-film transistor (TFT) devices, in an attempt to develop a simple and robust solution process for the synthesis of inorganic semiconductors. Our material design strategy is to use a sol-gel reaction to carry out the deposition of a spin-coated CdS film, which can then be converted to a xerogel material. These devices were found to exhibit n-channel TFT characteristics with an excellent field-effect mobility (a saturation mobility of ${\sim}\;48\;cm^2V^{-1}s^{-1}$) and low voltage operation (< 5 V). These results show that these semiconducting thin film materials can be used in low-cost and high-performance printable electronics.

  • PDF

The Physical Fluidity Properties of Cement Containing Melamine-type Superplasticizer Obtained with Various Synthetic Conditions (다양한 합성조건에서 얻어진 멜라민계 고유동화제가 함유된 시멘트의 물리적 유동특성)

  • Yoon, Sung-Won;Lee, Bum-Jae
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.815-821
    • /
    • 2005
  • Three major commercially available organic chemical admixtures are modified lignosulfonates (LS), sulfonated naphthalene-formaldehyde resins (SNF) and sulfonated melamine-formaldehyde (SMF). In this study, various sulfonated melamine-formaldehyde (SMF) superplasticizers were synthesized via four synthetic steps including hydroxymethylation (Step 1), sulfonation (Step 2), polymerization (Step 3) and neutralization and stabilization (Step 4). In this synthesis, mole ratio of melamine to formaline and the amount of acid catalyst used were varied. The obtained SMF superplasticizers were applied to cement paste and mortar and their physical properties including workability, slump loss, compressive strength were investigated. Also their hydrate shapes were investigated by examining SEM images of the cured paste. It was found that the fluidity properties of cement were significantly influenced by the structure of SMF condensates.

Analysis of Non-compliance of Food Utensils, Containers, and Packages in Foreign Countries During 2011-2019 (2011-2019년 식품용 기구 및 용기·포장의 제외국 부적합 정보 분석)

  • Cho, Seung Yong;Lee, Ye Yeon;Cho, Sanggoo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.141-147
    • /
    • 2021
  • The foreign trends of noncompliance occurring frequently in food contact materials during the period of 2011-2019 was investigated by analyzing the food safety risk information DB in the National Food Safety Information Service (NFSI). A total of 2,042 cases of noncompliance of food utensils, containers, and packages were classified into 5 violation categories; administrative procedures, manufacturing and processing standards, residues and migration standards, labeling and advertising, and quality standards. This was again subcategorized according to non-compliance causative factors. The non-compliances in residues and migration standards comprised the largest proportion (76.4%) of the violative categories. The number of noncompliance information collected in 2011 was 88 cases and increased to 373 cases in 2019. A 72.8% of the non-compliance case was identified to be products of 4 countries (China 64.2%, Germany 4.0%, Japan 3.2%, and Taiwan 3.1%), those produce large quantities of containers and packaging products. During the period of 2011-2019, the number of illegal use of hazardous materials and illegal recycling of waste synthetic resins has decreased to less than one a year since 2014. On the other hand, after 2016, inconsistency of heat-resisting temperature labeling (Taiwan), non-compliance in paper container's strength standards, violation of printing standards, and the risk of consumer injury while using the products were newly reported due to the strengthening of consumer safety protection regulations. Migration of hazardous substances in synthetic polymer products such as heavy metals, melamine and formaldehyde in melamine tableware, primary aromatic amines which are colorant components in kitchenware such as ladles and spatulas, and phthalate plasticizers have been continuously reported with high frequency.

Separation of Ni(II), Co(II), Mn(II), and Si(IV) from Synthetic Sulfate and Chloride Solutions by Ion Exchange (황산과 염산 합성용액에서 이온교환에 의한 니켈(II), 코발트(II), 망간(II) 및 실리케이트(IV)의 분리)

  • Nguyen, Thi Thu Huong;Wen, Jiangxian;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.73-80
    • /
    • 2022
  • Reduction smelting of spent lithium-ion batteries at high temperature produces metallic alloys. Following solvent extraction of the leaching solutions of these metallic alloys with either sulfuric or hydrochloric acid, the raffinate is found to contain Ni(II), Co(II), Mn(II), and Si(IV). In this study, two cationic exchange resins (Diphonix and P204) were employed to investigate the loading behavior of these ions from synthetic sulfate and chloride solutions. Experimental results showed that Ni(II), Co(II), and Mn(II) could be selectively loaded onto the Diphonix resin from a sulfate solution of pH 3.0. With a chloride solution of pH 6.0, Mn(II) was selectively loaded onto the P204 resin, leaving Ni(II) and Si(IV) in the effluent. Elution experiments with H2SO4 and/or HCl resulted in the complete recovery of metal ions from the loaded resin.