• Title/Summary/Keyword: synthetic jet

Search Result 60, Processing Time 0.022 seconds

Numerical Study on Flow Characteristics of Synthetic Jet with Slot Exit (Synthetic Jet 출구 형상의 변화에 따른 유동 특성 파악을 위한 수치적 연구)

  • Kim, Min-Hee;Kim, Woo-Re;Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.356-361
    • /
    • 2011
  • The flow characteristics of synthetic jet depending on rectangular and circular jet exit configuration are investigated using numerical computation with cross flow. In rectangular slot, synthetic jet generates the strong vortex, however, supply fewer momentum and effectiveness of flow control is reduced along flow direction. In circular slot, regular vortex is fanned from slot center to end and developed in flow direction. It affects the wider region than rectangular slot. The distribution of wall shear stress is considered in order to indicate the effectiveness of flow control device for flow separation delay. As a result, circular slot is a more suitable candidate for delaying flow separation.

  • PDF

Characterization of Vortex Advection from a Synthetic Jet Impinging on a Wall (충돌 합성 제트의 와류 이송 특성 분석)

  • Kim, MuSeong;Lee, HoonSang;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.39-47
    • /
    • 2019
  • Impingement cooling utilizing synthetic jets is emerging as a popular cooling technique because of its high local cooling efficiency. The interaction between the vortex structure of the synthetic jet and the surface is crucial in understanding the mechanism of this technique. In this study, the impinging vortex structure and its advection are investigated by experiments with jet-to-surface spacing $2{\leq}H/D{\leq}7$, and synthetic jet Reynolds number $5120{\leq}Re{\leq}9050$. Using phase-locked particle image velocimetry, ensemble averaged (phase averaged) flow fields are obtained, and vortex identification and quantification techniques are applied. The shape, trajectory, and intensity change of the vortex are assessed. A sharp decline in the vortex intensity and the occurrence of a counter-rotating vortex at the impingement point are observed.

Control of Flow Over a Circular Cylinder Using a Synthetic Jet (원형 실린더에서 합성 제트를 이용한 유동 제어)

  • Moon, Sung-Hyun;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2704-2707
    • /
    • 2008
  • We perform an active control on flow over a circular cylinder using a synthetic jet at Re=3900. The synthetic jet is issued from a cavity located inside the cylinder, generating a train of vortices near the surface. These vortices interact with and weaken the main vortices, resulting in drag reduction at a high frequency.

  • PDF

A STUDY ABOUT FLOW CONTROL CHARACTERISTICS USING A SYNTHETIC JET (Synthetic Jet을 이용한 유동제어 특성연구)

  • Hong, Woo-Ram;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Yu-Shin;Kim, Chong-Am
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • To develop an aerodynamic performance, two groups of studies have been achieved widely. One is about the geometric design of vehicles and the other is about aerodynamic devices. Geometric design is a credible and stable method. However, it is not flexible and each part is related interactively. Therefore, if one part of geometry is modified, the other part will be required to redesign. On the other hand, the flow control by aerodynamic devices is flexible and modulized method. Even though it needs some energy, a relatively small amount of input makes more advanced aerodynamic performance. Synthetic jet is one of the method in the second group. The device repeats suctions and blowing motions in constant frequency. According to the performance, the adjacent flow to flight surface are served momentum. This mechanism can reduce the aerodynamic loss of boundary layer and separated flow. A synthetic jet actuator has several parameters, which influences the flow control. This study focuses on the parameter effects of synthetic jet - orifice geometry, frequency, jet speed and etc.

STUDY OF FLOW CONTROL CHARACTER USING SYNTHETIC JET (Synthetic jet을 이용한 유동제어 특성연구)

  • Hong, Woo-Ram;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Yu-Shin;Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.72-78
    • /
    • 2007
  • To develop the aerodynamic performance, there are widely two group of studies are achieved. The first one is about design of the vehicles geometry and the second one is about aerodynamic devices. Geometry design is highly credible and stable method. But it is not flexible and each parts are related interactively. So if one part geometry are modified, the other parts are required to be redesigned. The other hand, flow control by aerodynamic device is flexible and modulized method. Though it needs energy, relatively little input makes far advanced aerodynamic performance. Synthetic Jet is one of the second group method. The device repeats suction and blowing motion in constant frequency. According to the performance, the flow which are near the flight surface are served momentum. This mechanism can reduce the aerodynamic loss by boundary layer and separated flow. Synthetic jet actuator has several parameters, that influence the flow control. This study focus the parameters effects of the synthetic jet - orifice geometry, frequency, jet speed and etc.

  • PDF

Numerical Study on Flow Characteristics of Synthetic Jet with Rectangular and Circular Slot Exit (사각형 및 원형 출구 Synthetic Jet의 유동 특성에 대한 수치적 연구)

  • Kim, Min-Hee;Kim, Woo-Re;Kim, Chong-Am;Jung, Kyung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.585-595
    • /
    • 2011
  • The flow characteristics of synthetic jet depending on rectangular and circular jet exit configuration are investigated using numerical computation with cross flow. In rectangular slot, synthetic jet generates the strong vortex but supplies fewer momentum and effectiveness of flow control is reduced along flow direction. In circular slot, regular vortex is formed from slot center to end. It affects the wider region than rectangular slot. The distribution of wall shear stress is considered in order to indicate the effectiveness of flow control device for flow separation delay. Consequently, circular slot is a more suitable candidate for delaying flow separation. In order to derive the optimal shape of a circular slot exit, hole gap and diameter that affect the flow structure and flow control were analyzed. As a result, consider the hole diameter and gap of circular slot exit design, effectiveness of the flow control can be increased.

Development of Synthetic Jet Micro Air Pump (Synthetic Jet 마이크로 에어펌프의 개발)

  • Choi, J.P.;Kim, K.S.;Seo, Y.H.;Ku, B.S.;Jang, J.H.;Kim, B.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.594-599
    • /
    • 2008
  • This paper presents a micro air pump based on the synthetic jet to supply reactant at the cathode side for micro fuel cells. The synthetic jet is a zero mass flux device that converts electrical energy into the momentum. The synthetic jet actuation is usually generated by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, orifices and PZT diaphragms. Therefore, it is very important that the design parameters are optimized because of the simple configuration. To design the synthetic jet micro air pump, a numerical analysis has been conducted for flow characteristics with respect to various geometries. From results of numerical analysis, the micro air pump has been fabricated by the PDMS replication process. The most important design factors of the micro air pump in micro fuel cells are the small size and low power consumption. To satisfy the design targets, we used SP4423 micro chip that is high voltage output DC-AC converter to control the PZT. The SP4423 micro chips can operate from $2.2{\sim}6V$ power supply(or battery) and is capable of supplying up to 200V signals. So it is possible to make small size controller and low power consumption under 0.1W. The size of micro air pump was $16{\times}13{\times}3mm^3$ and the performance test was conducted. With a voltage of 3V at 800Hz, the air pump's flow rate was 2.4cc/min and its power consumption was only 0.15W.

Experimental and Computational Study on Separation Control Performance of Synthetic Jets with Circular Exit

  • Kim, Minhee;Lee, Byunghyun;Lee, Junhee;Kim, Chongam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.296-314
    • /
    • 2016
  • This paper presents experimental and computational investigations of synthetic jets with a circular exit for improving flow control performance. First, the flow feature and vortex structure of a multiple serial circular exit were numerically analyzed from the view point of flow control effect under a cross flow condition. In order to improve separation control performance, experimental and numerical studies were conducted according to several key parameters, such as hole diameter, hole gap, the number of hole, jet array, and phase difference. Experiments were carried out in a quiescent condition and a forced separated flow condition using piezoelectrically driven synthetic jets. Jet characteristics were compared by measuring velocity profiles and pressure distributions. The interaction of synthetic jets with a freestream was examined by analyzing vortical structure characteristics. For separation control performance, separated flow over an airfoil at high angles of attack was employed and the flow control performance of the proposed synthetic jet was verified by measuring aerodynamic coefficient. The circular exit with a suitable hole parameter provides stable and persistent jet vortices that do beneficially affect separation control. This demonstrates the flow control performance of circular exit array could be remarkably improved by applying a set of suitable hole parameters.

FLOW CONTROL ON ELLIPTIC AIRFOILS USING SYNTHETIC JET (합성제트를 이용한 타원형 익형 유동제어)

  • Kim, S.H.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.46-52
    • /
    • 2010
  • In the present work, the aerodynamic characteristics of elliptic airfoils which have a 12% thickness ratio are numerically investigated based on Reynolds-averaged Navier-Stokes equations and a transition SST model at a Reynolds number 8.0$\times$105. The numerical simulation of a synthetic jet actuator which is a well-known zero-net-mass active flow control actuator located at x/c = 0.00025, was performed to control massive flow separation around the leading edge of the elliptic airfoils. Four cases of non-dimensional frequencies were simulated at an angle of attack of 12 degree. It is found that the size of the vortex induced by synthetic jets was getting smaller as the jet frequency becomes higher. Comparison of the location of synthetic jets between x/c = 0.00025 (around the leading edge) and x/c = 0.9 (near the separation) shows that the control near the leading edge induces closed recirculation flow regions caused by the interaction of the synthetic jet with the external flow, but the control applied at 0.9c (near the trailing edge) induces a very small and weak vortex which quickly decays due to weak intensity.

A Development of Wind Tunnel Test System for Synthetic Jet Actuator with Embedded Web Server (임베디드 웹서버를 이용한 Synthetic Jet Actuator의 풍동실험장치 개발)

  • Jung Gyu Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.639-646
    • /
    • 2005
  • As the internet communication is prevalent in recent years, it becomes quite possible to monitor and control some mechanical plants from the remote place through the TCP/IP communication. Such a concept is expected to be applied to many industrial systems fur easy maintenance and trouble shooting as well as various kinds of expensive test equipments fo. sharing. Synthetic jet actuate.(SJA) is a kind of high-lifting device to prevent flow separation at high angle of attack and its use for flow control has received a great amount of attention. In this research, remote control and data monitoring system for SJA wind tunnel test is implemented by TCP/IP communication with DSP as a embedded web server. From the tests performed with embedded server, it showed the possibility of reliable remote control system design utilizing the internet communication.