• 제목/요약/키워드: synthetic aperture magnetometry (SAM)

검색결과 3건 처리시간 0.019초

다채널 스퀴드 미분계에서 센서 잡음이 위치추정 오차에 미치는 영향 (Influence of Sensor Noise on the Localization Error in Multichannel SQUID Gradiometer System)

  • 김기웅;이용호;권혁찬;김진목;정용석;강찬석;김인선;박용기;이순걸
    • Progress in Superconductivity
    • /
    • 제5권2호
    • /
    • pp.98-104
    • /
    • 2004
  • We analyzed a noise-sensitivity profile of a specific SQUID sensor system for the localization of brain activity. The location of a neuromagnetic current source is estimated from the recording of spatially distributed SQUID sensors. According to the specific arrangement of the sensors, each site in the source space has different sensitivity, that is, the difference in the lead field vectors. Conversely, channel noises on each sensor will give a different amount of the estimation error to each of the source sites. e.g., a distant source site from the sensor system has a small lead-field vector in magnitude and low sensitivity. However, when we solve the inverse problem from the recorded sensor data, we use the inverse of the lead-field vector that is rather large, which results in an overestimated noise power on the site. Especially, the spatial sensitivity profile of a gradiometer system measuring tangential fields is much more complex than a radial magnetometer system. This is one of the causes to make the solutions of inverse problems unstable on intervening of the sensor noise. In this study, in order to improve the localization accuracy, we calculated the noise-sensitivity profile of our 40-channel planar SQUID gradiometer system, and applied it as a normalization weight factor to the source localization using synthetic aperture magnetometry.

  • PDF

스퀴드 심자도 장치를 이용한 심방성 부정맥의 측정 (Detection of Rapid Atrial Arrhythmias in SQUID Magnetocardiography)

  • 김기웅;권혁찬;김기담;이용호;김진목;김인선;임현균;박용기;김두상;임승평
    • Progress in Superconductivity
    • /
    • 제7권1호
    • /
    • pp.28-35
    • /
    • 2005
  • We propose a method to measure atrial arrhythmias (AA) such as atrial fibrillation (Afb) and atrial flutter (Afl) with a SQUID magnetocardiograph (MCG) system. To detect AA is one of challenging topics in MCG. As the AA generally have irregular rhythm and atrio-ventricular conduction, the MCG signal cannot be improved by QRS averaging; therefore a SQUID MCG system having a high SNR is required to measure informative atrial excitation with a single scan. In the case of Afb, diminished f waves are much smaller than normal P waves because the sources are usually located on the posterior wall of the heart. In this study, we utilize an MCG system measuring tangential field components, which is known to be more sensitive to a deeper current source. The average noise spectral density of the whole system in a magnetic shielded room was $10\;fT/{\surd}Hz(a)\;1\;Hz\;and\;5\;fT/{\surd}Hz\;(a)\;100\;Hz$. We measured the MCG signals of patients with chronic Afb and Afl. Before the AA measurement, the comparison between the measurements in supine and prone positions for P waves has been conducted and the experiment gave a result that the supine position is more suitable to measure the atrial excitation. Therefore, the AA was measured in subject's supine position. Clinical potential of AA measurement in MCG is to find an aspect of a reentry circuit and to localize the abnormal stimulation noninvasively. To give useful information about the abnormal excitation, we have developed a method, separative synthetic aperture magnetometry (sSAM). The basic idea of sSAM is to visualize current source distribution corresponding to the atrial excitation, which are separated from the ventricular excitation and the Gaussian sensor noises. By using sSAM, we localized the source of an Afl successfully.

  • PDF