• Title/Summary/Keyword: synthetic antiferromagnetic layer

Search Result 8, Processing Time 0.043 seconds

THERMAL SATABILITY AND MAGNETORESISTANCE OF TOP SPIN VALVE WITH SYNTHETIC ANTIFERROMAGNET CoFe/Ru/CoFe/IrMn

  • J. Y. Hwang;Kim, M. Y.;K. I. Jun;J. R. Rhee;Lee, S. S.;D. G. Hwang;S. C. Yu;Lee, S. H.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.64-65
    • /
    • 2002
  • Recently the synthetic antiferromagnetic layer (SAF) has received much attention because it replaces the pinned layer of the conventional spin valve (CSV) sensors and its overall performance [1], The spin valve (SV) with SAF has the from buffer/F/Cu/APl/Ru/AP2/AF, where F is the soft ferromagnetic layer (typically NiFe with CoFe interfacial doping), AP1 and AP2 are two ferromagnetic layers (typically CoFe alloys) antiferromagnetically coupled through a thin Ru layer. (omitted)

  • PDF

Computer Simulation of Switching Characteristics and Magnetization Flop in Magnetic Tunnel Junctions Exchange Biased by Synthetic Antiferromagnets

  • Lim, S.H.;Uhm, Y.R.
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.132-141
    • /
    • 2001
  • The switching characteristics and the magnetization-flop behavior in magnetic tunnel junctions exchange biased by synthetic antiferromagnets (SyAFs) are investigated by using a computer simulations based on a single-domain multilayer model. The bias field acting on the free layer is found to be sensitive to the thickness of neighboring layers, and the thickness dependence of the bias field is greater at smaller cell dimensions due to larger magnetostatic interactions. The resistance to magnetization flop increases with decreasing cell size due to increased shape anisotropy. When the cell dimensions are small and the synthetic antiferromagnet is weakly, or not pinned, the magnetization directions of the two layers sandwiching the insulating layer are aligned antiparallel due to a strong magnetostatic interaction, resulting in an abnormal magneto resistance (MR) change from the high-MR state to zero, irrespective of the direction of the free-layer switching. The threshold field for magnetization-flop is found to increase linearly with increasing antiferromagnetic exchange coupling in the synthetic antiferromagnet. Irrespective of the magnetic parameters and cell sizes, magnetization flop does not exist near zero applied field, indicating that magnetization flop is driven by the Zeeman energy.

  • PDF

Magnetic Field Dependence of Torque Signals in Synthetic Antiferromagnetic Coupled CoFeB/Ru/CoFeB Thin Film (합성형 반강자성 결합 재료의 자기장 세기에 따른 토오크 신호 분석)

  • Yoon, Seok-Soo;Jun, Woo-Sang;Kim, Dong-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.3
    • /
    • pp.83-87
    • /
    • 2011
  • We have analyzed the torque signals measured in synthetic antiferromagnetic (SAF) coupled CoFeB/Ru/CoFeB thin film, which signals were drastically changed at flopping field ($H_F$) and saturation field ($H_s$). The minimum value of negative uniaxial anisotropy constant ($-\;K_1$) was appeared at HF. The $-\;K_1$ was due to the zero net magnetization by the antiferromagnetic coupling between two ferromagnetic layers. Whereas, the biaxial anisotropy constant (K2) was induced in the field range of $H_F$ < H < $H_s$. The induced $K_2$ was originated from deviation angles between magnetization directions of two ferromagnetic layers. And at H > $H_s$, intrinsic uniaxial anisotropy constant of CoFeB layer was observed. These change of the anisotropy constant with magnetic field was explained by the magnetization process of two ferromagnetic layers based on Stoner-Wohlfarth model calculation for SAF thin film.

Magnetoresistance Properties in Synthetic CoFe/Ru/CoFe/FeMn Spin Valves with Different Pinned Layer Thicknesses (합성형 반강자성체인 CoFe/Ru/CoFe/FeMn에서 고정층의 두께 차이에 따른 스핀 밸브 구호의 자기저항 특성)

  • 김광윤
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.211-216
    • /
    • 2001
  • Top synthetic spin valves wi th structure Ta/NiFe/CoFe/Cu/CoFe(Pl)/Ru/CoFe(P2)/FeMn/Ta on Si (100) substrate with SiO$_2$ of 1500 were prepared by dc magnetron sputtering system. We have changed only the thickness of the free layer and the thickness difference (Pl-P2) in the two ferromagnetic layers separated by Ru, and investigated the effect of magnetic film thickness on the GMR properties and the interlayer coupling field in a spin valve with a synthetic antiferromagnet. As thickness difference of pinned layer was decreased from +25 to -25 , MR ratio was decreased gradually. However, there was a dip zone indicating a big change of MR ratio around Pl = P2, which can be due to the large canting of pinned layers. The modified Neel model was suggested for the top synthetic spin valve to explain the interlayer coupling field according to the thickness change of ferromagnetic layers. The interlayer coupling field was decreased due to the magnetostatic coupling (orange peel coupling) as suggested by model. However, the interlayer coupling field was not explained at the dip zone by the modified Neel model. The deviation of modified Neel model at the dip zone could be due to the largely canting of the pinned layers as well, which depends on different thickness in synthetic antiferromagnetic structure.

  • PDF

Magnetization Behavior of CoB/Ru/CoB Thin Film (CoB/Ru/CoB 박막 재료의 자화 거동 특성 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.5
    • /
    • pp.154-158
    • /
    • 2013
  • We have analyzed the magnetization curves measures by using VSM and MOKE in synthetic antiferromagnetic coupled CoB/Ru/CoB thin film. The measured results were compared with calculated ones by Stoner-Wohlfarth model based on the magnetization behavior of two ferromagnetic layers ($M_1$, $M_2$). The calculated total magnetization ($M_{tot}=M_1+M_2$) and single layer magnetization($M_1$) behaviors were compared with measured results by using VSM and MOKE, respectively. The total magnetization curve ($M_{tot}=M_1+M_2$) showed reversible magnetization behavior with flopping field of about 50 Oe. While single layer magnetization ($M_1$) behaviors showed irreversible magnetization behavior in the field range of $H_F$ < H < $H_F$. These magnetization behaviors were explained by the angle difference between magnetization directions of two ferromagnetic layers in SAF sample.