• Title/Summary/Keyword: synoptic weather systems

Search Result 33, Processing Time 0.016 seconds

High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS (분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측)

  • Kim, Sohyun;Kim, Bomi;Lee, Garim;Lee, Yaewon;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.333-346
    • /
    • 2024
  • High-resolution medium-range streamflow prediction is crucial for sustainable water quality and aquatic ecosystem management. For reliable medium-range streamflow predictions, it is necessary to understand the characteristics of forcings and to effectively utilize weather forecast data with low spatio-temporal resolutions. In this study, we presented a comparative analysis of medium-range streamflow predictions using the distributed hydrological model, WRF-Hydro, and the numerical weather forecast Global Data Assimilation and Prediction System (GDAPS) in the Geumho River basin, Korea. Multiple forcings, ground observations (AWS&ASOS), numerical weather forecast (GDAPS), and Global Land Data Assimilation System (GLDAS), were ingested to investigate the performance of streamflow predictions with highresolution WRF-Hydro configuration. In terms of the mean areal accumulated rainfall, GDAPS was overestimated by 36% to 234%, and GLDAS reanalysis data were overestimated by 80% to 153% compared to AWS&ASOS. The performance of streamflow predictions using AWS&ASOS resulted in KGE and NSE values of 0.6 or higher at the Kangchang station. Meanwhile, GDAPS-based streamflow predictions showed high variability, with KGE values ranging from 0.871 to -0.131 depending on the rainfall events. Although the peak flow error of GDAPS was larger or similar to that of GLDAS, the peak flow timing error of GDAPS was smaller than that of GLDAS. The average timing errors of AWS&ASOS, GDAPS, and GLDAS were 3.7 hours, 8.4 hours, and 70.1 hours, respectively. Medium-range streamflow predictions using GDAPS and high-resolution WRF-Hydro may provide useful information for water resources management especially in terms of occurrence and timing of peak flow albeit high uncertainty in flood magnitude.

Using Spatial Data and Crop Growth Modeling to Predict Performance of South Korean Rice Varieties Grown in Western Coastal Plains in North Korea (공간정보와 생육모의에 의한 남한 벼 품종의 북한 서부지대 적응성 예측)

  • 김영호;김희동;한상욱;최재연;구자민;정유란;김재영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.224-236
    • /
    • 2002
  • A long-term growth simulation was performed at 496 land units in the western coastal plains (WCP) of North Korea to test the potential adaptability of each land unit for growing South Korean rice cultivars. The land units for rice cultivation (CZU), each of them represented by a geographically referenced 5 by 5 km grid tell, were identified by analyzing satellite remote sensing data. Surfaces of monthly climatic normals for daily maximum and minimum temperature, precipitation number of rain days and solar radiation were generated at a 1 by 1 km interval by spatial statistical methods using observed data at 51 synoptic weather stations in North and South Korea during 1981-2000. Grid cells felling within a same CZU and, at the same time, corresponding to the satellite data- identified rice growing pixels were extracted and aggregated to make a spatially explicit climatic normals relevant to the rice growing area of the CZU. Daily weather dataset for 30 years was randomly generated from the monthly climatic normals of each CZU. Growth and development parameters of CERES-rice model suitable for 11 major South Korean cultivars were derived from long-term field observations. Eight treatments comprised of 2 transplanting dates $\times$ 2 cropping systems $\times$ 2 irrigation methods were assigned to each cultivar. Each treatment was simulated with the randomly generated 30 years' daily weather data (from planting to physiological maturity) for 496 land units in WCP to simulate the growth and yield responses to the interannual climate variation. The same model was run with the input data from the 3 major crop experiment stations in South Korea to obtain a 30 year normal performance of each cultivar, which was used as a "reference" for comparison. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to evaluate the suitability of each land unit for growing a specific South Korean cultivar. The results may be utilized as decision aids for agrotechnology transfer to North Korea, for example, germplasm evaluation, resource allocation and crop calendar preparation.

Classification of Snowfalls over the Korean Peninsula Based on Developing Mechanism (발생기구에 근거한 한반도 강설의 유형 분류)

  • Cheong, Seong-Hoon;Byun, Kun-Young;Lee, Tae-Young
    • Atmosphere
    • /
    • v.16 no.1
    • /
    • pp.33-48
    • /
    • 2006
  • A classification of snowfall type based on development mechanism is proposed using previous snowfall studies, operational experiences, etc. Five types are proposed: snowfall caused by 1) airmass transformation (AT type), 2) terrain effects in a situation of expanding Siberian High (TE type), 3) precipitation systems associated with extratropical cyclones (EC type), 4) indirect effects of extratropical cyclones passing over the sea to the south of the Korean peninsula (ECS type), and 5) combined effects of TE and ECS types (COM type). Snowfall events during 1981-2001 are classified according to the 5 types mentioned above. For this, 118 events, with at least one station with daily snowfall depth greater than 20 cm, are selected. For the classification, synoptic weather charts, satellite images, and precipitation data are used. For TE and COM types, local sea-level pressure chart is also used to confirm the presence of condition for TE type (this is done for events in 1990 and thereafter). The classification shows that 109 out of 118 events can be classified as one of the 5 types. In the remaining 8 events, heavy snowfall occurred only in Ullung Island. Its occurrence may be due to one or more of the following mechanism: airmass transformation, mesoscale cyclones and/or mesoscale convergence over the East Sea, etc. Each type shows different characteristics in location of snowfall and composition of precipitation (i.e., dry snow, rain, and mixed precipitation). The AT-type snowfall occurs mostly in the west coast, Jeju and Ullung Islands whereas the TE-type snowfall occurs in the East coast especially over the Young Dong area. The ECS-type snowfall occurs mostly over the southern part of the peninsula and some east cost area (sometimes, whole south Korea depending on the location of cyclones). The EC- and COM-type snowfalls occur in wider area, often whole south Korea. Precipitation composition also varies with the type. The AT-type has a snow ratio (SR) higher than the mean value. The TE- and EC-type have SR similar to the mean. The ECS- and COM-type have SR values smaller than the mean. Generally the SR values at high latitude and mountainous areas are higher than those at the other areas. The SR value informs the characteristics of the precipitation composition. An SR value larger than 10 means that all precipitation is composed of snow whereas a zero SR value means that all precipitation is composed of rain.