• Title/Summary/Keyword: synchronous signal

검색결과 320건 처리시간 0.025초

Initial Rotor Polarity Detection of Single-phase Permanent Magnet Synchronous Motor Based on Virtual dq-axis (단상 영구자석 동기 전동기의 가상 dq축 기반 초기 회전자 자극 검출)

  • Seo, Sung-Woo;Hwang, Seon-Hwan;Lee, Ki-Chang
    • Journal of IKEEE
    • /
    • 제24권4호
    • /
    • pp.1004-1010
    • /
    • 2020
  • This paper proposes an initial rotor magnetic pole detection method for single-phase permanent magnet synchronous motors. The target motor cannot obtain position information based on the back emf in the low speed and stop state. Therefore, an open loop starting process is required, and in this process, initial rotor position information for low current and soft start is need. The proposed initial rotor magnetic pole detection algorithm considers the effect of asymmetric air- gap and magnetic flux. In addition, the high-frequency voltage signal injection and the offset voltage for accurate detection is used. As a result, the permanent magnet poles are is determined by acquiring the maximum value of the induced current using the virtual dq-axis.

The Synchronous Control System Design of a Movable Weir using Coupling Structure (커플링구조를 이용한 가동위어의 동기제어시스템 설계)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제12권5호
    • /
    • pp.837-844
    • /
    • 2017
  • The weir to regulate water level in a tide generation tank is above and below carried by two electric cylinders which are mounted on right and left of weir itself. In this case, a movement difference between right and left cylinder causes unbalance of weir and friction between weir and guide. And then, the weir will not be sent to target point. In this study, a synchronous control system is developed to take accurate and quick equilibrium of the weir. The control system based on cross coupled structure consists of two I-PD controllers and a lead compensator. Each of the I-PD controllers is designed in order that the electric cylinder may exactly follow the reference signal without overshoot and input saturation. And the lead compensator is designed to achieve stable and accurate synchronization. Finally, the simulation result shows that the designed synchronous control system is effective for elimination of synchronous error.

LMI-based Sliding Mode Speed Tracking Control Design for Surface-mounted Permanent Magnet Synchronous Motors

  • Leu, Viet Quoc;Choi, Han-Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.513-523
    • /
    • 2012
  • For precisely regulating the speed of a permanent magnet synchronous motor system with unknown load torque disturbance and disturbance inputs, an LMI-based sliding mode control scheme is proposed in this paper. After a brief review of the PMSM mathematical model, the sliding mode control law is designed in terms of linear matrix inequalities (LMIs). By adding an extended observer which estimates the unknown load torque, the proposed speed tracking controller can guarantee a good control performance. The stability of the proposed control system is proven through the reachability condition and an approximate method to implement the chattering reduction is also presented. The proposed control algorithm is implemented by using a digital signal processor (DSP) TMS320F28335. The simulation and experimental results verify that the proposed methodology achieves a more robust performance and a faster dynamic response than the conventional linear PI control method in the presence of PMSM parameter uncertainties and unknown external noises.

Propulsion Control of a Small Maglev Train with Linear Synchronous Motors (선형 동기 전동기가 있는 축소형 자기부상열차의 추진 제어)

  • Park, Jin-Woo;Kim, Chang-Hyun;Park, Doh-Young
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1838-1844
    • /
    • 2011
  • In this paper, the propulsion control of a high-speed maglev train is studied. Electromagnetic suspension is used to levitate the vehicle, and linear synchronous motors (LSM) are used for propulsion. In general, a low-speed maglev train uses a linear induction motor (LIM) for propulsion that is operated under 300[km/h] due to the power-collecting and end-effect problem of LIM. In case of the high-speed maglev train over 500[km/h], a linear synchronous motor (LSM) is more suitable than LIM because of a high-efficiency and high-output properties. An optical barcode positioning system is used to obtain the absolute position of the vehicle due to its wide working distance and ease of installation. However, because the vehicle is working completely contactless, the position measured on the vehicle has to be transmitted to the ground for propulsion control via wireless communication. For this purpose, Bluetooth is used and communication hardware is designed. A propulsion controller using a digital signal processor (DSP) in the ground receives the delayed position information, calculates the required currents, and controls the stator currents through inverters. The performance of the implemented propulsion control is analyzed with a small maglev train which was manufactured for experiments, and the applicability of the high-speed maglev train will be explored.

  • PDF

An Improved Central 60° Synchronous Modulation for High Transient Performance with PMSM Stator Flux Control Used in Urban Rail Transit Systems

  • Fang, Xiaochun;Lin, Fei;Yang, Zhongping
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.542-552
    • /
    • 2016
  • Central 60° synchronous modulation is an easy pulse-width modulation (PWM) method to implement for the traction inverters of urban rail trains at a very low switching frequency. Unfortunately, its switching patterns are determined by a Fourier analysis of assumed steady-state voltages. As a result, its transient responses are not very good with over-currents and high instantaneous torque pulses. In the proposed solution, the switching patterns of the conventional central 60° modulation are modified according to the dynamic error between the target and actual stator flux. Then, the specific trajectory of the stator flux and current vector can be guaranteed, which leads to better system transients. In addition, stator flux control is introduced to get smooth mode switching between the central 60° modulation and the other PWMs in this paper. A detailed flow chart of the control signal transmission is given. The target flux is obtained by an integral of the target voltage. The actual PMSM flux is estimated by a minimum order flux state observer based on the extended flux model. Based on a two-level inverter model, improved rules in the α-β stationary coordinate system and equations of the switching patterns amendment are proposed. The proposed method is verified by simulation and experimental results.

Detection and Classification of Demagnetization and Short-Circuited Turns in Permanent Magnet Synchronous Motors

  • Youn, Young-Woo;Hwang, Don-Ha;Song, Sung-ju;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1614-1622
    • /
    • 2018
  • The research related to fault diagnosis in permanent magnet synchronous motors (PMSMs) has attracted considerable attention in recent years because various faults such as permanent magnet demagnetization and short-circuited turns can occur and result in unexpected failure of motor related system. Several conventional current and back electromotive force (BEMF) analysis techniques were proposed to detect certain faults in PMSMs; however, they generally deal with a single fault only. On the contrary, cases of multiple faults are common in PMSMs. We propose a fault diagnosis method for PMSMs with single and multiple combined faults. Our method uses three phase BEMF voltages based on the fast Fourier transform (FFT), support vector machine(SVM), and visualization tools for identifying fault types and severities in PMSMs. Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) are used to visualize the high-dimensional data into two-dimensional space. Experimental results show good visualization performance and high classification accuracy to identify fault types and severities for single and multiple faults in PMSMs.

Initial Rotor Position Detection of Single-phase Permanent Magnet Synchronous Motor using Offset Voltage (옵셋 전압을 이용한 단상 영구자석 동기 전동기의 초기 회전자 위치 검출)

  • Hwang, Seon-Hwan;Seo, Sung-Woo;Jung, Tae-Uk
    • Journal of IKEEE
    • /
    • 제23권2호
    • /
    • pp.622-627
    • /
    • 2019
  • This paper propose an initial rotor position detection method for sensorless operation of a single-phase permanent magnet synchronous motor(SP-PMSM) with asymmetric air-gap. In general, the sensorless control based on back-emf estimation is difficult to estimate the back-emf at the zero and low speed regions. For this reason, an open loop start-up technique is indispensable, and it is also necessary to detect the initial position of the rotor in order to rotate in a certain direction. In this paper, we propose a method to detect rotor polarity by adding offset voltage to high frequency voltage signal based on the magnetic characteristics of SP-PMSM. The validity and usefulness of the proposed algorithm are verified through several experimental results.

Analysis of the APS protocol for BSHR/2 networks (BSHR/2 네트워크를 위한 APS 프로토콜 분석)

  • 김성선;손희영;이상순
    • Journal of the Korea Society of Computer and Information
    • /
    • 제6권2호
    • /
    • pp.108-115
    • /
    • 2001
  • SDH-based SHR networks are the reconfiguration process in case of failure and APS protocol used. In this study, addresses the maximum allowed recovery time in two fiber bidirectional networks. We analyse the APS protocol and derive the Processing time domains of each n order to cope with the maximum reconfiguration time of 50㎳, as specified in the ITU-T standard. We finally analyze the interleaved failures. One is the signal degrade then the signal failure, the other is the signal failure then the signal failure. Any case analysis is carried out. reconfiguration time can be guaranteed.

The Study of Synchronous Transformer to Generate Gate Pulse Signal in Phase Controlled Rectifer (위상제어 정류기 게이트 펄스 신호를 위한 동기 신호 변압기에 관한 연구)

  • Kim, Jin-Sung;Ryu, Ho-Sun;Lee, Jea-Do
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1021-1023
    • /
    • 2002
  • 최근 전력연구원에서 화력 발전소에 설치한 위상 제어 정류기 (PCR : Phasc Controled Rcctifier)에 설치된 동기 변압기 (Synchronous Transformer)의 절연 파괴에 의한 소손이 발생되어 발전소 운용에 신뢰성을 떨어뜨리고 있다. 본 논문에서는 800MW급 발전기용 다중화 정지형 여자시스템을 현장에 적용하여 설치, 운전중인 동기 변압기를 기준으로 1차측(고압측)이 절연 파괴후 소손된 변압기의 설계규격과 1차측과 2차측의 권선배치, 고조파 영향, 권선 굵기에 따른 단락 용량 기타 변압기 제작 방법에 대한 전반적 기술을 검토한 결과를 기술하고자 한다.

  • PDF

Adaptive Backstepping Controller Design for a Permanent Magnet Synchronous Motor using Speed Observer (속도관측기를 활용한 영구자석동기전동기의 적응 백스테핑 제어기 설계)

  • 현근호;양해원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제9권5호
    • /
    • pp.347-353
    • /
    • 2003
  • A nonlinear speed controller for a surface mounted permanent magnet synchronous motor (PMSM) based on a newly developed adaptive backstepping approach is presented To compensate parameter uncertainties and load torque disturbance, a nonlinear adaptive backstepping control law and adaptive law are derived systematically through virtual control input and suitable Lyapunov function. Also, speed observer without using costly speed sensor is presented. Simulation results show that the proposed controller can observe the speed and track the reference speed signal generated by a reference model.