• Title/Summary/Keyword: synchronous reluctance motors

Search Result 43, Processing Time 0.031 seconds

Tendency in Domestic and Foreign Research/Development of Synchronous Reluctance Motors (동기릴럭턴스 전동기의 국내${\cdot}$외 연구 및 개발 동향)

  • Kim, Dong-Hun;Kim, Tae-Young;Choi, Jong-Woo;Kim, Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.569-571
    • /
    • 2005
  • Recent interest in the synchronous reluctance motor has increased in possible applications such as home appliance, hybrid electric vehicles, etc. This paper presents a brief review of the research and development of synchronous reluctance motors, carried out up to now, from the designers' viewpoint. In addition, the key points in the design of synchronous reluctance motors and a new design method for innovating on their rotor structures are discussed.

  • PDF

Direct Torque Control of a Synchronous Reluctance Motor Using the Finite Element Method (유한요소법을 이용한 동기형 릴럭턴스 전동기의 직접토크제어 특성젠 관한 연구)

  • Lee, Moon-Ju;Kim, Sol;Lee, Ju;Ko, Kwon-Min;Kim, Tea-Duk;Oh, Sang-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.666-668
    • /
    • 2002
  • Reluctance torque is generated by the rotor of the rugged construction in Synchronous Reluctance Motor. Its construction is simple, and it is very economic because a rotor in existed AC motor can be used. As the Synchronous inductance in Synchronous Reluctance Motor is an element that is proportional to torque, the exact value must be experimentally or analytically found for controlling and the performance development of motors. In this paper, direct torque control simulation to maximize the torque of the Synchronous Reluctance Motor and fast response characteristics was carried out with the inductance value by the Finite Element Method. For the simulation results, there are torques and fluxs response characteristics when controlling speed.

  • PDF

A Novel Sensorless Low Speed Vector Control for Synchronous Reluctance Motors Using a Block Pulse Function-Based Parameter Identification

  • Ahmad Ghaderi;Tsuyoshi Hanamoto;Teruo Tsuji
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.235-244
    • /
    • 2006
  • Recently, speed sensorless vector control for synchronous reluctance motors (SYRMs) has deserved attention because of its advantages. Although rotor angle calculation using flux estimation is a straightforward approach, the DC offset can cause an increasing pure integrator error in this estimator. In addition, this method is affected by parameter fluctuation. In this paper, to control the motor at the low speed region, a modified programmable cascaded low pass filter (MPCPLF) with sensorless online parameter identification based on a block pulse function is proposed. The use of the MPCLPF is suggested because in programmable, cascade low pass filters (PCLPF), which previously have been applied to induction motors, the drift increases vastly wl)en motor speed decreases. Parameter identification is also used because it does not depend on estimation accuracy and can solve parameter fluctuation effects. Thus, sensorless speed control in the low speed region is possible. The experimental system includes a PC-based control with real time Linux and an ALTERA Complex Programmable Logic Device (CPLD), to acquire data from sensors and to send commands to the system. The experimental results show the proposed method performs well, speed and angle estimation are correct. Also, parameter identification and sensorless vector control are achieved at low speed, as well as, as at high speed.

High Efficiency Drive Technique for Synchronous Reluctance Motors Using a Neural Network

  • Urasaki Naomitsu;Senjyu Tomonobu
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.340-346
    • /
    • 2006
  • A high efficiency drive technique for synchronous reluctance motors (SynRM) using a neural network (NN) is presented in this paper. High efficiency drive condition depends on the mathematical model of SynRM. A NN is employed as an adaptive model of SynRM. The proposed high efficiency drive technique does not require an accurate mathematical model of SynRM. Moreover, the proposed method shows robustness against machine parameter variations because the training algorithm of the NN is executed on-line. The usefulness of the proposed method is confirmed through experimentation.

A Method to Design the Rotor of Synchronous Reluctance Motors for Maximum Torque and Power Factor (동기형 릴럭턴스 전동기의 토크와 역률 최대화를 위한 회전자 설계 기법)

  • Kim, Won-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.93-100
    • /
    • 2013
  • This paper propose a method to design the rotor of synchronous reluctance motors(SynRM) for maximum torque and power factor by using DOE(design of experiment) with the design variables which are parameters of barriers and segments. In this process, there are problems that require lots of simulation time and number of simulations when calculating the both torque and power factor using the finite element method in order to find load angle, core loss per speed. In order to improve this problem, we calculate only value of flux linkage by finite element method, and can decrease analysis and the number of analysis time by applying steady state expression of the power factor and torque. Finally, in order to verify the characteristics of optimal model, we make prototype motor and compare with the conventional SynRM. In this experiment, we use the DC current decay test for calculating d-and q-axis inductance.

Direct Torque Control of Synchronous Reluctance Motor Using the AC standstill Test (교류 정지시험법을 이용한 동기형 릴럭턴스 전동기의 직접토크제어 특성 연구)

  • Yun, Jun-Bo;Kim, Sol;Lim, Jin-Jae;Lee, Moon-Ju;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.56-58
    • /
    • 2003
  • The Synchronous inductance in Synchronous Reluctance Motor is an element that is proportional to torque. the exact value must be found for controlling and the performance development of motors. In this paper, the inductances that are obtained by the Finite Element Method and AC standstill Test are compared each other. When controlling the direct torque. the fast response characteristics has been carried out with the inductace by the AC stanstill Test. To test the proposal controller, A Synchronous Reluctance Motor has been designed and manufactured and the adequacy of the proposal control are confirmed thought simulations and experiments.

  • PDF

Rotor Design and Characteristics Analysis of High Speed Reluctance Synchronous Motor (고속 동기형 릴럭턴스 전동기의 회전자 설계 및 특성 해석)

  • Jang, S.M.;Moon, J.S.;Seo, J.H.;Seong, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.269-271
    • /
    • 1998
  • Reluctance Synchronous Motors(RSM) with new rotor shape are considered in this paper. Since the stator of a RSM is similar as that of an induction motor, attention is focused here on the rotor structure. We have designed the parameter of RSM and analyzed the characteristics of the electromagnetic energy conversion.

  • PDF

Parameter Identification of a Synchronous Reluctance Motor by using a Synchronous PI Current Regulator at a Standstill

  • Hwang, Seon-Hwan;Kim, Jang-Mok;Khang, Huynh Van;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.491-497
    • /
    • 2010
  • This paper proposes an estimation algorithm for the electrical parameters of synchronous reluctance motors (SynRMs) by using a synchronous PI current regulator at standstill. In reality, the electrical parameters are only measured or estimated in limited conditions without fully considering the effects of the switching devices, connecting wires, and magnetic saturation. As a result, the acquired electrical parameters are different from the real parameters of the motor drive system. In this paper, the effects of switching devices, connecting wires, and the magnetic saturation are considered by simultaneously using the short pulse and closed loop equations of resistance and synchronous inductances. Therefore, the proposed algorithm can be easily and safely implemented with a reduced measuring time. In addition, it does not need any external or additional measurement equipment, information on the motor's dimensions, and material characteristics as in the case of FEM. Several experimental results verify the effectiveness of the proposed algorithm.

A Maximum Torque Control of Synchronous Reluctance Motors Considering Magnetic Saturation (동기릴럭턴스전동기의 자기포화를 고려한 최대토크제어)

  • Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.89-94
    • /
    • 2014
  • This paper presents a synchronous reluctance motor drive for maximum torque to current (MTC) considering magnetic saturation. Measured d-axis and q-axis inductances are used to obtain current angle vs. maximum torque curve using torque equation. Maximum torque to current control is achieved by the current angle and stator current for maximum torque from the current angle vs. maximum torque curve at a given torque reference.

Design and Analysis of Synchronous Reluctance Motors for Maximum Torque and Power Factor (동기형 릴럭턴스 전동기의 토크와 역률의 최대화를 위한 설계 및 해석)

  • Kim, Won-Ho;Kim, Ki-Chan;Won, Sung-Hong;Ahn, Jun-Sun;Choi, Seung-Gil;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.753-754
    • /
    • 2006
  • In case of the synchronous reluctance motor, the torque is proportional to silency difference and the power factor is in proportion to silency ratio. This paper presents the rotor design variable that has a effect on silency difference and silency ratio for getting a maximum torque and a power factor in the synchronous reluctance motor. To carry through the object, a number of the analysis model is reduced by DOE (Design of Experiments) and the main effects are found by the FEM (Finite Element Analysis).

  • PDF