• Title/Summary/Keyword: synaptonemal complex

Search Result 14, Processing Time 0.023 seconds

Fast and Precise: How to Measure Meiotic Crossovers in Arabidopsis

  • Kim, Heejin;Choi, Kyuha
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.273-283
    • /
    • 2022
  • During meiosis, homologous chromosomes (homologs) pair and undergo genetic recombination via assembly and disassembly of the synaptonemal complex. Meiotic recombination is initiated by excess formation of DNA double-strand breaks (DSBs), among which a subset are repaired by reciprocal genetic exchange, called crossovers (COs). COs generate genetic variations across generations, profoundly affecting genetic diversity and breeding. At least one CO between homologs is essential for the first meiotic chromosome segregation, but generally only one and fewer than three inter-homolog COs occur in plants. CO frequency and distribution are biased along chromosomes, suppressed in centromeres, and controlled by pro-CO, anti-CO, and epigenetic factors. Accurate and high-throughput detection of COs is important for our understanding of CO formation and chromosome behavior. Here, we review advanced approaches that enable precise measurement of the location, frequency, and genomic landscapes of COs in plants, with a focus on Arabidopsis thaliana.

Ultrastructural Study on the Development of Male Germ Cell of the Olive Flounder, Paralichthys olivaceus (Teleostei: Pleuronectidae) (넙치 (Paralichthys olivaceus)의 웅성생식세포 발달에 관한 미세구조적 연구)

  • Kim, Jae-Won;Kim, Bong-Seok;Choi, Cheol-Young;Lee, Jung-Sick
    • Applied Microscopy
    • /
    • v.33 no.3
    • /
    • pp.243-250
    • /
    • 2003
  • Ultrastructural changes of the male germ cells and structure of spermatozoa in Paralichthys olivaceus were examined by means of the light and transmission electron microscopes. The spermatogonium has a large nucleus with a single nucleus with a single nucleolus in the interphase. Primary spermatocytes are identified by the formation of the synaptonemal complex in the karyoplasm. The secondary spermatocytes are more concentrated and contains numerous cell organelle in the cytoplasm. The nucleus of spermatid in spermiogenesis is more condensed in the karyoplasm, and show spherical structure in shape. Mitochondria of the spermatids are observed in the lower portion of the nucleus. The spermatozoon consists of the head, mid piece and tail. The acrosome is not observed in the head. Axial filaments of the flagellum consists of nine pairs of the peripheral microtubules and one pair of the central microtubules.

The Ultrastructure of Testis and Spermatogenesis in Bluespotted Mud Hopper(Boleophthalmus pectinirostris) (짱뚱어, Boleophthalmus pectinirostris 정소의 미세구조 및 정자형성)

  • Kang Kyoung Ho;Kho Kang Hee;Kim Jae Min
    • Development and Reproduction
    • /
    • v.7 no.2
    • /
    • pp.89-93
    • /
    • 2003
  • The present study observed the ultrastructure of testis of bluespotted mud hopper(Boleophthalmus pectinirostris), and sperrnatogenesis was discussed also. The testis was surrounded by a thin adventitia, inside which spermatocyst composed the parenchyma of testis. Each lobule was enwrapped by many spermatocysts, which were filled with different kinds of spermatogenic cell clusters at the same developmental stage. In the lobule lumen there are large numbers of spermatozoa The thin adventitia(outer wall) of testis was composed of outer epithelium, and the underlying layers, such as collagen fiber layer, and myoid tissue. The myoid tissue elongated into the inside of testis, became the main componentof interstitium between spermatocyst where sperrnatogenesis occurred. In addition interstitial cells containing dense homogeneous nucleus and abundant mitochondria were observed. Spermatogonia contained round nucleus with diffuse chromatin and nucleolus, and dense nuclear bodies surround by mitochondria in cytoplasm. The synaptonemal . complex was observed in primary spermatocytes clearly. Early spermatid presented larger round nucleus composed of granular chromatin, which was located in the center of cytoplasm. The nucleus of mid-spermatid composed of finely granular chromatin lied on one side of spermatid, and abundant mitochondria had migrated another side. A nuclear fossa appeared in the site near mitochondria in late-spermatid, and the centriole was formed in nuclear fossa.

  • PDF

Fine Structural Observations on Spermatogenesis of the Goldeye Rockfish, Sebastes thompsoni (Teleostei: Scorpaenidae)

  • LEE Jung Sick;OH Yung Keun;HUH Sung-Hoi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.1005-1012
    • /
    • 1997
  • Fine structural changes of the germ cells during spermatogenesis in the goldeye rockfish, Sebastes thompson; were examined by means of the transmission and scanning electron microscopy. A spermatogonium has a large nucleus with a single nucleolus in the interphase. Primary spermatocytes are characterized by the formation of chromatin clumps and presence of the synaptonemal complex in the nucleus. The nucleoplasm of secondary spermatocytes is more condensed than that of primary spermatocytes, and the cytoplasm contains numerous mitochondria, endoplasmic reticulum and Golgi complex. The nuclei of spermatids in metamorphosis show sickle-like shape as the nucleoplasm becomes more condensed. In the cytoplasm of spermatids, the proacrosomal granules are not found at all. A spermatozoon consists of head, neck and tail. The acrosome is absent in the head. Four to five cytoplasmic collars are observed in the posterior portion of the head of spermatozoon. The well developed axonemal lateral fins are observed in the flagellum of spermatozoon.

  • PDF

Ycs4 is Required for Efficient Double-Strand Break Formation and Homologous Recombination During Meiosis

  • Hong, Soogil;Choi, Eui-Hwan;Kim, Keun Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1026-1035
    • /
    • 2015
  • Condensin is not only responsible for chromosome condensation, but is also involved in double-strand break (DSB) processing in the cell cycle. During meiosis, the condensin complex serves as a component of the meiotic chromosome axis, and mediates both proper assembly of the synaptonemal complex and DSB repair, in order to ensure proper homologous chromosome segregation. Here, we used the budding yeast Saccharomyces cerevisiae to show that condensin participates in a variety of chromosome organization processes and exhibits crucial molecular functions that contribute to meiotic recombination during meiotic prophase I. We demonstrate that Ycs4 is required for efficient DSB formation and establishing homolog bias at the early stage of meiotic prophase I, which allows efficient formation of interhomolog recombination products. In the Ycs4 meiosis-specific allele (ycs4S), interhomolog products were formed at substantial levels, but with the same reduction in crossovers and noncrossovers. We further show that, in prophase chromosomal events, ycs4S relieved the defects in the progression of recombination interactions induced as a result of the absence of Rec8. These results suggest that condensin is a crucial coordinator of the recombination process and chromosome organization during meiosis.

Ultrastructural Study on Spermatogenesis of Rockfish, Sebastes inermis (Pisces: Scorpaenidae) (볼락 (Sebastes inermis)의 정자형성과정에 관한 미세구조적 연구)

  • Lee, Jung-Sick
    • Applied Microscopy
    • /
    • v.26 no.3
    • /
    • pp.267-275
    • /
    • 1996
  • The internal ultrastructural changes of germ cells and external morphology of spermatozoon during the spermatogenesis in the rockfish, Sebastes inermis were studied using transmission and scanning electron microscope. The testis is seminiferous tubule type in internal structure. Seminiferous tubule consist of many cyst which contain numerous germ cells in same developmental stage. Spermatogonium contained a large nucleus with single nucleolus in interphase. Primary spermatocyte identified by the presence of synaptonemal complex in nucleus and the contained a number of mitochondria, endoplasmic reticula and Golgi bodies in cytoplasm. The nucleoplasm of secondary spermatocyte was more concentrated than that of the previous phase. Spermatids were more condensed in nucleus and cytoplasm, and show the long-spherical shape. In the cytoplasm of spermatid mitochondria located to lower portion of the nucleus and Golgi bodies located to upper portion, but proacrosomal granule is not appeared. The spermatozoon consist of the head and tail. No acrosome could be found in the head. The cytoplasmic collar of posterior part in sperm head contained mitochondria which surrounded axial filament. The well developed axonemal lateral fins were identified in sperm flagellum, and the axial filament of the flagellum consist of nine pairs of peripheral microtubules and one pair of central microtubules.

  • PDF

Spermatogenesis and Sperm Ultrastructure of the Equilateral Venus, Gomphina veneriformis (Bivalvia: Veneridae) (대복, Gomphina veneriformis의 정자형성과정 및 정자 미세구조)

  • Park, Chae-Kyu;Park, Jung-Jun;Lee, Jeong-Yong;Lee, Jung-Sick
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.303-310
    • /
    • 2002
  • Spermatogenesis and sperm ultrastructure are investigated by means of light and transmission electron microscopy in the equilateral venus, Gomphina veneriformis which is dominant bivalve in the east coast of Korea. In the active spermatogenic season, testis consists of numerous spermatogenic follicles which is contains germ cells in the different developmental stage. The spermatogonia attached to spermatogenic follicle wall and has a large nucleus with electron-dense nucleolus. The spermatocytes are characterized by appearance of synaptonemal complex and well-developed Golgi complex. Nucleus of spermatid consists of numerous heterogeneous granules with high electron density. Karyoplasmic condensation, acrosome and flagellum formations are observed during spermiogenesis. Testicular matured sperms of sperm bundle consists of head, midpiece and tail. The head is about $8.5{\mu}m$ long and comprises a long nucleus and a bullet-like acrosome ($8.5{\mu}m$ in length). Acrosomal rod of microfilaments is observed in the lumen between nucleus and acrosome. The midpiece has four mitochondria. And tail has the typical '9+2' microtubule system.

Polymorphisms and expression levels of TNP2, SYCP3, and AZFa genes in patients with azoospermia

  • Mohammad Ismael Ibrahim Jebur;Narges Dastmalchi;Parisa Banamolaei;Reza Safaralizadeh
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.4
    • /
    • pp.253-261
    • /
    • 2023
  • Objective: Azoospermia (the total absence of sperm in the ejaculate) affects approximately 10% of infertile males. Despite diagnostic advances, azoospermia remains the most challenging issue associated with infertility treatment. Our study evaluated transition nuclear protein 2 (TNP2) and synaptonemal complex protein 3 (SYCP3) polymorphisms, azoospermia factor a (AZFa) microdeletion, and gene expression levels in 100 patients with azoospermia. Methods: We investigated a TNP2 single-nucleotide polymorphism through polymerase chain reaction (PCR) restriction fragment length polymorphism analysis using a particular endonuclease. An allele-specific PCR assay for SYCP3 was performed utilizing two forward primers and a common reverse primer in two PCR reactions. Based on the European Academy of Andrology guidelines, AZFa microdeletions were evaluated by multiplex PCR. TNP2, SYCP3, and the AZFa region main gene (DEAD-box helicase 3 and Y-linked [DDX3Y]) expression levels were assessed via quantitative PCR, and receiver operating characteristic curve analysis was used to determine the diagnostic capability of these genes. Results: The TNP2 genotyping and allelic frequency in infertile males did not differ significantly from fertile volunteers. In participants with azoospermia, the allelic frequency of the SYCP3 mutant allele (C allele) was significantly altered. Deletion of sY84 and sY86 was discovered in patients with azoospermia and oligozoospermia. Moreover, SYCP3 and DDX3Y showed decreased expression levels in the azoospermia group, and they exhibited potential as biomarkers for diagnosing azoospermia (area under the curve, 0.722 and 0.720, respectively). Conclusion: These results suggest that reduced SYCP3 and DDX3Y mRNA expression profiles in testicular tissue are associated with a higher likelihood of retrieving spermatozoa in individuals with azoospermia. The homozygous genotype TT of the SYCP3 polymorphism was significantly associated with azoospermia.

Recent Advancement on the Knowledges of Meiotic Division (I) (減數分裂, 最近의 進步(I))

  • 한창열
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.6
    • /
    • pp.453-475
    • /
    • 1998
  • During the 100 years since the initial discovery of meiotic phenomenon many brilliant aspects have been elucidated, but further researches based on light microscopy alone as an experimental tool have been found to have some limits and shortcomings. By the use of electron microscopy and armed with the advanced knowledges on modern genetics and biochemistry it has been possible to applu molecular technology in gaining information on the detailed aspects of meiosis. As synapsis takes place, a three-layered proteinous structure called the synatonemal complex starts to form in the space between the homologous chromosomes. To be more precise, it begins to form along the paired chromosomes early in the prophase I of meiotic division. The mechanism that leads to precise point-by-point pairing between homologous chromocomes division. The mechamism that leads to precise point-by-point pairing between homologous chromosomes remains to be ascertained. Several items of information, however, suggest that chromsome alignment leading to synapsis may be mediated somehow by the nuclear membrane. Pachytene bivalents in eukaryotes are firmly attached to the inner niclear membrane at both termini. This attached begins with unpaired leptotene chromosomes that already have developed a lateral element. Once attached, the loptotene chromosomes begin to synapse. A number of different models have been proposed to account for genetic recombination via exchange between DNA strands following their breakage and subsequent reunion in new arrangement. One of the models accounting for molecular recombination leading to chromatid exchange and chiasma formation was first proposed in 1964 by Holliday, and 30 years later still a modified version of his model is favored. Nicks are made by endomuclease at corresponding sites on one strant of each DNA duplex in nonsister chromatid of a bivalent during prophase 1 of meiosis. The nicked strands loop-out and two strands reassociate into an exchanged arrangement, which is sealed by ligase. The remaining intact strand of each duplex is nicked at a site opposite the cross-over, and the exposed ends are digested by exonuclease action. Considerable progress has been made in recent years in the effort to define the molecular and organization features of the centromere region in the yeast chromosome. Centromere core region of the DNA duplex is flanked by 15 densely packed nucleosomes on ons side and by 3 packed nucleosomes on the other side, that is, 2000 bp on one side and 400 400 bp in the other side. All the telomeres of a given species share a common DNA sequence. Two ends of each chromosome are virtually identical. At the end of each chromosome there exist two kinds of DNA sequence" simple telpmeric sequences and telpmere-associated sequencies. Various studies of telomere replication, function, and behabior are now in progress, all greatly aided by molecular methods. During nuclear division in mitosis as well as in meiosis, the nucleili disappear by the time of metaphase and reappear during nuclear reorganizations in telophase. When telophase begins, small nucleoli form at the NOR of each nucleolar-organizing chromosome, enlarge, and fuse to form one or more large nucleoli. Nucleolus is a special structure attached top a specific nucleolar-organizing region located at a specific site of a particular chromosome. The nucleolus is a vertical factory for the synthesis of rRNAs and the assenbly of ribosome subunit precursors.sors.

  • PDF