• 제목/요약/키워드: symmetry of differential equations

검색결과 9건 처리시간 0.018초

보존률과 미분방정식의 대칭성 -뇌터의 정리를 중심으로- (Conservation Laws and Symmetry of Differential Equations -stories about E. Noether's Theorem-)

  • 한종규
    • 한국수학사학회지
    • /
    • 제31권5호
    • /
    • pp.211-222
    • /
    • 2018
  • This paper surveys the theory of symmetry group of differential equations. A proof of the simplest version of the Noether's theorem on conservation laws has been presented with examples in the classical mechanics. As a new approach to the conservation laws the theory of characteristic cohomology due to S. H. Wang and others has been presented.

DIFFERENTIAL EQUATIONS AND ZEROS FOR NEW MIXED-TYPE HERMITE POLYNOMIALS

  • JUNG YOOG KANG
    • Journal of applied mathematics & informatics
    • /
    • 제41권4호
    • /
    • pp.869-882
    • /
    • 2023
  • In this paper, we find induced differential equations to give explicit identities of these polynomials from the generating functions of 2-variable mixed-type Hermite polynomials. Moreover, we observe the structure and symmetry of the zeros of the 2-variable mixed-type Hermite equations.

SYMMETRIES OF PARTIAL DIFFERENTIAL EQUATIONS

  • Gaussier, Herve;Merker, Joel
    • 대한수학회지
    • /
    • 제40권3호
    • /
    • pp.517-561
    • /
    • 2003
  • We establish a link between the study of completely integrable systems of partial differential equations and the study of generic submanifolds in $\mathbb{C}$. Using the recent developments of Cauchy-Riemann geometry we provide the set of symmetries of such a system with a Lie group structure. Finally we determine the precise upper bound of the dimension of this Lie group for some specific systems of partial differential equations.

Torsional flexural steady state response of monosymmetric thin-walled beams under harmonic loads

  • Hjaji, Mohammed A.;Mohareb, Magdi
    • Structural Engineering and Mechanics
    • /
    • 제52권4호
    • /
    • pp.787-813
    • /
    • 2014
  • Starting with Hamilton's variational principle, the governing field equations for the steady state response of thin-walled beams under harmonic forces are derived. The formulation captures shear deformation effects due to bending and warping, translational and rotary inertia effects and as well as torsional flexural coupling effects due to the cross section mono-symmetry. The equations of motion consist of four coupled differential equations in the unknown displacement field variables. A general closed form solution is then developed for the coupled system of equations. The solution is subsequently used to develop a family of shape functions which exactly satisfy the homogeneous form of the governing field equations. A super-convergent finite element is then formulated based on the exact shape functions. Key features of the element developed include its ability to (a) isolate the steady state response component of the response to make the solution amenable to fatigue design, (b) capture coupling effects arising as a result of section mono-symmetry, (c) eliminate spatial discretization arising in commonly used finite elements, (d) avoiding shear locking phenomena, and (e) eliminate the need for time discretization. The results based on the present solution are found to be in excellent agreement with those based on finite element solutions at a small fraction of the computational and modelling cost involved.

REVISION OF THE THEORY OF SYMMETRIC ONE-STEP METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

  • Kulikov, G.Yo.
    • Journal of applied mathematics & informatics
    • /
    • 제5권3호
    • /
    • pp.669-690
    • /
    • 1998
  • In this paper we develop a new theory of adjoint and symmetric method in the class of general implicit one-step fixed-stepsize methods. These methods arise from simple and natral def-initions of the concepts of symmetry and adjointness that provide a fruitful basis for analysis. We prove a number of theorems for meth-ods having these properties and show in particular that only the symmetric methods possess a quadratic asymptotic expansion of the global error. In addition we give a very simple test to identify the symmetric methods in practice.

스파이크 노즐 설계 (SHAPING A NOZZLE WITH A CENTRAL BODY)

  • 김철웅
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.293-298
    • /
    • 2005
  • We calculate the coordinates of an axisymmetric nozzle with a central body. This nozzle ensures a transonic flow with a plane sound surface, which is orthogonal to the symmetry axis and has a wall kink at the sonic point, The Chaplygin transformation in the subsonic part of the flow leads the Dirichlet problem for a system of nonlinear equations. The definition domain of the solution in the velocity-hodograph plane is taken as a rectangle. This enables one to obtain the nozzle with a monotonic distribution of velocity along its subsonic part. In the nonlinear differential equation, the linear Chaplygin operator for plane flows is separated, which allows the iterative calculation of the solution. The supersonic part of the nozzle is calculated under the assumption that the flow at the nozzle exit is uniform and parallel to the symmetry axis; i.e., the supersonic jet outflows to the submerged space with the same pressure. The calculation is performed by the characteristic method. The exact solution of Tricomi equation for near-sonic flows with the straight sonic line is used to 'move away' the sound plane. The velocity distribution alone the supersonic part of the nozzle is also monotonic, which ensures the absence of the boundary-layer separation and, therefore, the adequacy of the ideal-gas model. calculations show that the flow in the supersonic part of the nozzle is continuous (compression shocks are absent)

  • PDF

The modal characteristics of non-uniform multi-span continuous beam bridges

  • Shi, Lu-Ning;Yan, Wei-Ming;He, Hao-Xiang
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.997-1017
    • /
    • 2014
  • According to the structure characteristics of the non-uniform beam bridge, a practical model for calculating the vibration equation of the non-uniform beam bridge is given and the application scope of the model includes not only the beam bridge structure but also the non-uniform beam with added masses and elastic supports. Based on the Bernoulli-Euler beam theory, extending the application of the modal perturbation method and establishment of a semi-analytical method for solving the vibration equation of the non-uniform beam with added masses and elastic supports based is able to be made. In the modal subspace of the uniform beam with the elastic supports, the variable coefficient differential equation that describes the dynamic behavior of the non-uniform beam is converted to nonlinear algebraic equations. Extending the application of the modal perturbation method is suitable for solving the vibration equation of the simply supported and continuous non-uniform beam with its arbitrary added masses and elastic supports. The examples, that are analyzed, demonstrate the high precision and fast convergence speed of the method. Further study of the timesaving method for the dynamic characteristics of symmetrical beam and the symmetry of mode shape should be developed. Eventually, the effects of elastic supports and added masses on dynamic characteristics of the three-span non-uniform beam bridge are reported.

충만 디스크의 면내 진동 해석을 위한 1차원 환상 평판 요소 (A One-dimensional Annular Plate Element for In-plane Vibration Analysis of Full Disks)

  • 곽동희;임정기;김창부
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1338-1346
    • /
    • 2009
  • We present a one-dimensional annular plate element with which the in-plane vibration of full disks can be analyzed efficiently and accurately by using the FEM. Its elementary mass matrix and stiffness matrix are derived, respectively, from the virtual work by effective forces and the virtual strain energy. The static deformation modes obtained from an integration of the differential equilibrium equations of the annular plate are used as interpolation functions of the one-dimensional annular plate element. The in-plane natural vibration characteristics of a 2-step full disk and a uniform full disk are analysed. Its results are compared with the results obtained by utilizing two-dimensional 8-node quadrilateral plane elements and cyclic symmetry of the disk. And also, by comparing with the theoretical results of previous researchers, the efficiency and accuracy of the presented element are verified.

후향적인 인과성은 가능한가? (Is Backwards Causation Possible?)

  • 안건훈
    • 철학연구
    • /
    • 제105권
    • /
    • pp.269-290
    • /
    • 2008
  • 이 논문에서는 '후향적인 인과관계'를 주장하는 견해들을 크게, 자의적인 행위에 근거한 접근방법, 분석수준별 차이에 근거한 접근방법, 물리방정식에 의한 접근방법, 물리현상에 근거한 접근방법으로 나누어 고찰하고, 그 각각의 특징과 문제점들을 지적했다. 이어서 후향적인 인과성을 펼치는 어떠한 견해도 아직은 설득력 있게 받아들여지지 않고 있음을 밝혔다. 후향적인 인과관계를 펼치는 견해들이 인과성분석에서 주류는 아닐지라도, 상호조건적 동시발생적인 측면에 근거해 대칭적인 관계 속에서 인과관계를 파악하거나, 전체상적인 접근에 의거해 서로가 직접 간접으로 인과관계를 유지하는 것으로 파악할 경우는 어느 정도 논거가 선다. 특히 인과그물이나 전체상적인 측면에서 접근할 경우는 더욱 그렇다. 그러나 유용성이라는 측면에서 본다면, 후향적인 인과성고찰은 원인선행설에 비해 그 설득력이 약하다. 이런 점에서 현재로서는 결과가 원인에 앞서지 못한다는 견해가 주류를 이룰 수밖에 없다.