• Title/Summary/Keyword: symmetric design

Search Result 588, Processing Time 0.026 seconds

Effect of FRP composites on buckling capacity of anchored steel tanks

  • Al-Kashif, M.A.;Ramadan, H.;Rashed, A.;Haroun, M.A.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.361-371
    • /
    • 2010
  • Enhancement in the seismic buckling capacity of steel tanks caused by the addition of fiber reinforced polymers (FRP) retrofit layers attached to the outer walls of the steel tank is investigated. Three-dimensional non-linear finite element modeling is utilized to perform such analysis considering non linear material properties and non-linear large deformation large strain analysis. FRP composites which possess high stiffness and high failure strength are used to reduce the steel hoop stress and consequently improve the tank capacity. A number of tanks with varying dimensions and shell thicknesses are examined using FRP composites added in symmetric layers attached to the outer surface of the steel shell. The FRP shows its effectiveness in carrying part of the hoop stresses along with the steel before steel yielding. Following steel yielding, the FRP restrains the outward bulging of the tank and continues to resist higher hoop stresses. The percentage improvement in the ultimate base moment capacity of the tank due to the addition of more FRP layers is shown to be as high as 60% for some tanks. The percentage of increase in the tank moment capacity is shown to be dependent on the ratio of the shell thickness to the tank radius (t/R). Finally a new methodology has been explained to calculate the location of Elephant foot buckling and consequently the best location of FRP application.

Nonlinear Finite Element Analysis of Containment Vessel by Considering the Tension stiffening Effect

  • Lee, Hong-Pyo;Choun, Young-Sun;Seo, Jeong-Moon;Shin, Jae-Chul
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.512-527
    • /
    • 2004
  • This paper describes the finite element (FE) analysis results of a 1/4 scale model of a prestressed concrete containment vessel (PCCV) by considering the tension stiffening effect, which is a result of the bond effect between the concrete and the steel. The tension stiffening model is assumed to be an exponential form based on the relationship between the average stress and the average strain of the concrete. The objective of the present FE analysis is to evaluate the ultimate internal pressure capacity of the PCCV, as well as its failure mechanism, when the PCCV model is subjected to a monotonous internal pressure beyond is design pressure capacity. With the commercial code ABAQUS, the FE analysis used two concrete failure criteria: a 2-dimensional axi-symmetric model with modified Drucker-Prager failure criteria and a 3-dimensional model with a damaged plasticity mod디. The results of our FE analysis on the ultimate pressure capacity and failure modes of PCCV have a good agreement with the experimental data.

Friction Angle on the Surface of Vertical Ground Anchor in Sand (모래지반내의 연직 지반앵커 표면의 마찰각)

  • 임종철
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.99-110
    • /
    • 1995
  • In this study, friction angles on the surface of vertical rigid ground anchor in normally consolidated dry sand were measured by model pullout tests in laboratory. Friction angles were obtained from the normal and shear stresses measured along depth of the anchor stir face by attaching several 2-dimensional load cells. Model tests were conducted under the plane strain state and axial symmetric state. From the results of tests, it was concluded that the maximum friction angle on the anchor surface coincides nearly with the maximum angle of stress obliquity on the plane of zero-extension direction obtained by plane strain compression test. This result was made with regard to the strength anisotropy and stress dependency of sand. It showed that when angle of shear resistance of the sand is applied to the friction angle of the anchor surface, the design capacity could be less than the applied force, thus making the anchor unsafe.

  • PDF

A Cost-Efficient Energy Supply Sources Deployment Scheme in Wireless Sensor Networks (센서 네트워크 바용 절감을 위한 에너지 공급장치 배치 기법)

  • Choi, Yun-Bum;Kim, Yong-Ho;Kim, Jae-Joon;Kim, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.738-743
    • /
    • 2011
  • This paper considers the cost minimization issue for sensor network systems where sensor energy is supplied by remote energy sources wirelessly. Assuming symmetric structures of sensor nodes and energy sources, cost minimization problem is formulated, where the cost of sensor networks is represented as a function of sensor node density and energy source coverage. The optimal solution for the problem is provided and simulation results show that the proposal scheme achieves around 19% cost reduction in comparision to a conventional scheme.

The design of authentication mechanism using kerberos and X.509 protocol in distributed environment (분산환경에서 Kerberos와 X.509 Protocol을 이용한 인증 메카니즘의 설계)

  • 김성진;정일용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2860-2866
    • /
    • 1997
  • Kerberos is the most used example of authentication technology in distributed environment. In this paper, based on this method, a new authentication mechanism associated with X.509 protocol that authenticates services between regions is presented. Since any suggestions to regional services are not described in Kerberos, the authentication between regiona is performed via the connected chain obtained from x.509. These two protocols have distinguished key management systems -X.509 is designed using an asymmetric method, while Kerberos using a symmetric method. In order to provide regional services, X.509 is employed on connection part and Kerberos on actual authetication part.

  • PDF

The Design of Elliptical Dual Offset Gregorian Antenna for Satellite Communication on Ka-band (Ka대역 위성통신용 타원형 이중옵셋 그레고리안 안테나 설계)

  • Kim, Chun-Won;Cheong, Chi-Hyun;Kim, Kun-Woo;Lee, Seong-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.811-818
    • /
    • 2013
  • In this paper, we have designed the elliptical dual offset gregorian antenna which can use Ka band earth station antennas in the fixed-satellite service. The structure of antenna is increasing the antenna gain by decreasing blockage areas and decreasing wind effects by shortening height of the antenna. The corrugate horn antenna for this antenna has symmetric radiation patterns and low side lobe levels that can meet ITU-R envelope. The distribution of electric field on a aperture of main reflector is calculated by an ray-tracing method that use the radiation pattern of the feed horn. The final geometric of antena is decided by choosing the distribution that comply with antenna requirement. The FEKO analysed electrical performance of this antenna. The fabricated antenna has 45.0dBi(@30.0GHz)/41.7dBi(@20.2GHz), high efficiency and low side lobe level that meet ITU-R S. 580-6 envelope.

Compensation of Inclined Rotating Axis Using Unsymmetric Groove Patterns (비대칭 Groove를 이용한 FDB 회전축의 기울기 보상)

  • Lee, Nam-Hun;Han, Jae-Hyuk;Oh, Dong-Ho;Kim, Chul-Soon;Byun, Yong-Kyu;Koo, J.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.582-585
    • /
    • 2004
  • Most of hard disk drives currently employ fluid dynamic bearing (FDB) for their rotor support. Stiffness of the FDB is affected by many design factors such as bearing clearance, fluid viscosity, and rotational speed. For the high rotating speed HDDs stiffness of the rotor is normally high enough to accomodate load disturbances. However small form factor HDDs that are to be operated in low power consumption are often designed with low stiffness rotors. Although the low stiffness rotor clearly benefits low power operation, it could damage the entire motor structure or head disk interface even by a light mechanical load disturbance such as shock or vibration. In addition, since a single channel HDD does not provide gram load equilibrium in axial direction the rotor could be tilted and make a hard contact to stator. A non-symmetric groove pattern could successfully compensate the tilted rotor angle during operation.

  • PDF

Dynamic Interaction between Conditional Stock Market Volatility and Macroeconomic Uncertainty of Bangladesh

  • ALI, Mostafa;CHOWDHURY, Md. Ali Arshad
    • Asian Journal of Business Environment
    • /
    • v.11 no.4
    • /
    • pp.17-29
    • /
    • 2021
  • Purpose: The aim of this study is to explore the dynamic linkage between conditional stock market volatility and macroeconomic uncertainty of Bangladesh. Research design, data, and methodology: This study uses monthly data covering the time period from January 2005 to December 2018. A comprehensive set of macroeconomic variables, namely industrial production index (IP), consumer price index (CPI), broad money supply (M2), 91-day treasury bill rate (TB), treasury bond yield (GB), exchange rate (EX), inflow of foreign remittance (RT) and stock market index of DSEX are used for analysis. Symmetric and asymmetric univariate GARCH family of models and multivariate VAR model, along with block exogeneity and impulse response functions, are implemented on conditional volatility series to discover the possible interactions and causal relations between macroeconomic forces and stock return. Results: The analysis of the study exhibits time-varying volatility and volatility persistence in all the variables of interest. Moreover, the asymmetric effect is found significant in the stock return and most of the growth series of macroeconomic fundamentals. Results from the multivariate VAR model indicate that only short-term interest rate significantly influence the stock market volatility, while conditional stock return volatility is significant in explaining the volatility of industrial production, inflation, and treasury bill rate. Conclusion: The findings suggest an increasing interdependence between the money market and equity market as well as the macroeconomic fundamentals of Bangladesh.

Design of Variable Data Transfer Rate Asymmetric TDD System Using Turbo Decoder with Double Buffer Controller (이중 버퍼 제어기 구조의 터보 복호기를 사용한 전송률 가변 비대칭 TDD 시스템 설계)

  • Park, Byeung-Kwan;Kim, Mi-Rae;Kim, Hyo-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.161-168
    • /
    • 2019
  • This paper proposes a variable data transfer asymmetric TDD(Time Division Duplex) system for small UAV(Unmanned Aerial Vehicle) data link system. In the proposed method, a turbo decoder with a double buffer controller is proposed to apply turbo decoder with long decoding time to asymmetric TDD system. The proposed method achieves variable data transfer rate and maximum data transfer rate. The advantage of the proposed method is demonstrated by its data transfer rate. The measured data transfer rate is more than 1.8 times than that of symmetric TDD system. In addition, PER(Packet Error Rate) performance is the same and data transfer rate is variable.

Adjustment of Initial Shape for Spoked Wheel Cable Structures Considering Retractable Membrane's Tension (개폐식 막 장력을 고려한 스포크-휠 케이블 구조의 설계 형상 조절 기법)

  • Ha, Hyeonju;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.109-116
    • /
    • 2019
  • In this paper, the shape adjustment algorithm of the spoked wheel cable structures with retractable membrane system is studied. The initial tension of the membrane or cable is necessary to form the structure and its value is determined by the design shape. However, due to internal and external environmental influences, its shape may be different from the initial designed shape. In the case of the cable structures covered in this study, tension adjustment is necessary to maintain the designed shape because it influences the tension of the cable depending on the state of the retractable membrane. Therefore, we proposed an adjustment algorithm of an initial shape based on the force method. The effectiveness and validity of the methodology were examined through the applicable cable structures. The results of the shape adjustment analysis of the symmetric spoked wheel cable model were reliable and accurate results were obtained.