• Title/Summary/Keyword: symmetric design

Search Result 591, Processing Time 0.028 seconds

Droplet Bistability in Microchannel and its Application to Flow Control (마이크로 채널 내부에서의 액적의 쌍안정성과 이를 활용한 유동 제어)

  • Lee, Beom-Joon;Yoo, Jung-Yul
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.43-47
    • /
    • 2010
  • We demonstrate the droplet bistability in a microchannel which has two symmetric necks that operate as capillary valves. It is shown that there are certain flow conditions, determined by droplet velocity and droplet size, to achieve bistability. Droplet bistabililty allows simple but precise control of droplet at a bifurcation channel. Therefore, by an appropriate channel design to induce droplet bistability, we can distribute droplets at a junction passively in the manner of perfect alternation and perfect switching in the choice of the outlets.

A Development of the Planetary Gear Noise for 6-speed RWD Automatic Transmission (후륜 6 속 자동변속기 유성기어 소음 개발)

  • Park, Ki Ho;Kim, Tai Hoon;Jung, Sang jin;Kim, Yunkyoo;Lee, Jeong Seon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.544-545
    • /
    • 2012
  • In recent years, vehicle manufacturers have steadily developed fuel saving technologies such as multi-speed automatic transmission. With such a background, the Hyundai-powertech have developed the new 6-speed rear wheel drive(RWD)automatic transmission for FR vehicles. Despite having six-speed, it has the same number of planetary gears as a previously used five-speed automatic transmission and fewer brakes and one-way clutches than the 5 A/T, meaning that it is light, compact, and inexpensive. But, in addition to meshing this internal and external gear simultaneously and phase difference by the tooth contact point and the time difference occurs asymmetric and symmetric sideband noise and vibration caused by the modulation in the vehicle. In this paper presents a method for the design of the carrier phase difference by developing various theories and experiments for gear noise.

  • PDF

A new method to calculate the equivalent stiffness of the suspension system of a vehicle

  • Zhao, Pinbin;Yao, Guo-Feng;Wang, Min;Wang, Xumin;Li, Jianhui
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.363-378
    • /
    • 2012
  • The stiffness of a suspension system is provided by the bushings and the stiffness of the wheel center controls the suspension's elasto-kinematic (e-k) specification. So the stiffness of the wheel center is very important, but the stiffness of the wheel center is very hard to measure. The paper give a new method that we can use the stiffness of the bushings to calculate the equivalent stiffness of the wheel center, which can quickly and widely be used in all kinds of suspension structure. This method can also be used to optimize and design the suspension system. In the example we use the method to calculate the equivalent stiffness of the wheel center which meets the symmetric and positive conditions of the stiffness matrix.

Balancing Inter-Ring Loads on SONET Dual-Ring without Demand Splitting

  • Lee, Chae-Y.;Moon, Jung-H.
    • IE interfaces
    • /
    • v.9 no.3
    • /
    • pp.64-71
    • /
    • 1996
  • In the survivability and simplicity aspect, SONET Self-healing Ring(SHR) is one of the most important schemes for the high-speed telecommunication networks. Since the ring capacity requirement is defined by the largest STS-1 cross-section in the ring, load balancing is the key issue in the design of SONET SHR. Recently, most of the research on load balancing problem have been concentrated on the SONET single-ring case. However, in certain applications, multiple-ring configuration is necessary because of the geographical limitations or the need for extra bandwidth. In this paper, the load balancing problem for SONET dual-ring is considered by assuming symmetric inter-ring demands. We present a linear programming based formulation of the problem. Initial solution and improvement procedures are presented, which solves the routing and interconnection between the two rings for each demand. Computational experiments are performed on various size of networks with randomly generated demand sets. Results show that the proposed algorithm is excellent in both the solution quality and the computational time requirement. The average error bound of the solutions obtained is 0.26% of the optimum.

  • PDF

Fault-Tolerant Tripod Gaits for Hexapod Robots (육각 보행 로봇의 내고장성 세다리 걸음새)

  • 양정민;노지명
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.689-695
    • /
    • 2003
  • Fault-tolerance is an important design criterion for robotic systems operating in hazardous or remote environments. This paper addresses the issue of tolerating a locked joint failure in gait planning for hexapod walking machines which have symmetric structures and legs in the form of an articulated arm with three revolute joints. A locked joint failure is one for which a joint cannot move and is locked in place. If a failed joint is locked, the workspace of the resulting leg is constrained, but hexapod walking machines have the ability to continue static walking. A strategy of fault-tolerant tripod gait is proposed and, as a specific form, a periodic tripod gait is presented in which hexapod walking machines have the maximum stride length after a locked failure. The adjustment procedure from a normal gait to the proposed fault-tolerant gait is shown to demonstrate the applicability of the proposed scheme.

A Study on droop of Tubular Type Linear Induction Motor (원통형 선형 유도전동기의 2차측 처짐에 관한 연구)

  • Jung, Sang-Yong;Chun, Jang-Sung;Im, Jeong-Pil;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.28-30
    • /
    • 1998
  • In the case of long secondary (applied in long distance), as it is established horizontal, the defects of droop arises resulting damage of entire system. Actually, it is difficult to expect reasonable characteristics and desirable operating in that case. This paper is about numerical analysis of secondary droop, non-symmetric and position displacement problems. In the base of this paper, the correction of mechanical difficulties in practical manufacturing and optimal design of TLIM considering these aspects can be progressed successively.

  • PDF

Study to Improve Torque of Electromagnetic Clutch by Using FEM (유한요소법을 이용한 전자석클러치의 토크향상에 대한 연구)

  • 박창호;조종두;이상우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.395-402
    • /
    • 2003
  • In this paper, we try to analyze the torque of electromagnetic clutch by using FEM. For Analysis of the magnetostatic field, we constitute axi-symmetric FEM model of an electromagnetic clutch. By resorting to the theory of magnetic circuits, we obtain a solution of theoretical torque to compare with the result of numerical analysis. From the result of numerical analysis, the air gap of electromagnetic clutch between armature and rotor is important to influence on the torque and the torque changes with the air gap of 0.2mm∼0.1mm Also we observe the characteristic of the torque by changing the relative permeability of each parts. Finally an optimized design of the electromagnetic clutch is proposed.

  • PDF

Free vibration analysis of damaged composite beams

  • Cunedioglu, Yusuf;Beylergil, Bertan
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.79-92
    • /
    • 2015
  • In this study, free vibration analyses of symmetric laminated cantilever and simply supported damaged composite beams are investigated by using finite element method (FEM). Free vibration responses of damaged beams are examined using Euler Bernoulli beam and classical lamination theories. A computer code is developed by using MATLAB software to determine the natural frequencies of a damaged beam. The local damage zone is assumed to be on the surface lamina of the beam by broken fibers after impact. The damaged zone is modeled as a unidirectional discontinuous lamina with $0^{\circ}$ orientations in this study. Fiber volume fraction ($v_f$), fiber aspect ratio ($L_f/d_f$), damage length ($L_D$) and its location (${\lambda}/L$), fiber orientation and stacking sequence parameters effects on natural frequencies are investigated. These parameters are affected the natural frequency values significantly.

Nonlinear analysis of finite beam resting on Winkler foundation with consideration of beam-soil interface resistance effect

  • Zhang, L.;Zhao, M.H.;Xiao, Y.;Ma, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.573-592
    • /
    • 2011
  • Comprehensive and accurate analysis of a finite foundation beam is a challenging engineering problem and an important subject in foundation design. One of the limitation of the traditional Winkler elastic foundation model is that the model neglects the effect of the interface resistance between the beam and the underneath foundation soil. By taking the beam-soil interface resistance into account, a deformation governing differential equation for a finite beam resting on the Winkler elastic foundation is developed. The coupling effect between vertical and horizontal displacements is also considered in the presented method. Using Galerkin method, semi-analytical solutions for vertical and horizontal displacements, axial force, shear force and bending moment of the beam under symmetric loads are presented. The influences of the interface resistance on the behavior of foundation beam are also investigated.

Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM

  • Narwariya, Manoj;Choudhury, Achintya;Sharma, Avadesh K.
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.113-132
    • /
    • 2018
  • This paper presents the vibration and harmonic analysis of orthotropic laminated composite plate. The response of plate is determined using Finite Element Method. The eight noded shell 281 elements are used to analyze the orthotropic plates and results are obtained so that the right choice can be made in applications such as aircrafts, rockets, missiles, etc. to reduce the vibration amplitudes. Initially the model response for orthotropic plate and harmonic response for isotropic plate is verified with the available literature. The results are in good agreement with the available literature. Numerical results for the natural frequency and harmonic response amplitude are presented. Effects of boundary conditions, thickness to width ratio and number of layers on natural frequency and harmonic response of the orthographic plates are also investigated. The natural frequency, mode shape and harmonic analysis of laminated composite plate has been determined using finite element package ANSYS.