• Title/Summary/Keyword: symmetric design

Search Result 588, Processing Time 0.026 seconds

Public key broadcast encryption scheme using new converting method

  • Jho, Nam-Su;Yoo, Eun-Sun;Rhee, Man-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6B
    • /
    • pp.199-206
    • /
    • 2008
  • Broadcast encryption is a cryptographical primitive which is designed for a content provider to distribute contents to only privileged qualifying users through an insecure channel. Anyone who knows public keys can distribute contents by means of public key broadcast encryption whose technique can also be applicable to many other applications. In order to design public key broadcast encryption scheme, it should devise some methods that convert a broadcast encryption scheme based on symmetric key cryptosystem to a public key broadcast encryption. Up to this point, broadcast encryption scheme on trial for converting from symmetric key setting to asymmetric public key setting has been attempted by employing the Hierarchical Identity Based Encryption (HIBE) technique. However, this converting method is not optimal because some of the properties of HIBE are not quite fitting for public key broadcast schemes. In this paper, we proposed new converting method and an efficient public key broadcast encryption scheme Pub-PI which is obtained by adapting the new converting method to the PI scheme [10]. The transmission overhead of the Pub-PI is approximately 3r, where r is the number of revoked users. The storage size of Pub-PI is O($c^2$), where c is a system parameter of PI and the computation cost is 2 pairing computations.

The questionable effectiveness of code accidental eccentricity

  • Ouazir, Abderrahmane;Hadjadj, Asma;Gasmi, Hatem;Karoui, Hatem
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • The need to account for accidental torsion in seismic design is no longer debatable, however, the seismic codes' requirement for accidental eccentricity has recently faced criticism. In order to get as close to real conditions as possible, this study investigated the impact of accidental torsion in symmetric RC multistory buildings caused by one of its many sources, the torsional earthquake component, and compared the results to those obtained by using the accidental eccentricity recommended by the codes (shifting the center of mass). To cover a wide range of frequencies and site conditions, two types of torsion seismic components were used: a recorded torsion accelerogram and five others generated using translation accelerograms. The main parameters that govern seismic responses, such as the number of stories (to account for the influence of all modes of vibration) and the frequency ratio (Ω) variation, were studied in terms of inter-story drift and displacement responses, as well as torsional moment. The results show that the eccentricity ratio of 5% required by most codes for accidental torsion should be reexamined and that it is prudent for computer analysis to use the static moment approach to implement the accidental eccentricity while waiting for new seismic code recommendations on the subject.

BDSS: Blockchain-based Data Sharing Scheme With Fine-grained Access Control And Permission Revocation In Medical Environment

  • Zhang, Lejun;Zou, Yanfei;Yousuf, Muhammad Hassam;Wang, Weizheng;Jin, Zilong;Su, Yansen;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1634-1652
    • /
    • 2022
  • Due to the increasing need for data sharing in the age of big data, how to achieve data access control and implement user permission revocation in the blockchain environment becomes an urgent problem. To solve the above problems, we propose a novel blockchain-based data sharing scheme (BDSS) with fine-grained access control and permission revocation in this paper, which regards the medical environment as the application scenario. In this scheme, we separate the public part and private part of the electronic medical record (EMR). Then, we use symmetric searchable encryption (SSE) technology to encrypt these two parts separately, and use attribute-based encryption (ABE) technology to encrypt symmetric keys which used in SSE technology separately. This guarantees better fine-grained access control and makes patients to share data at ease. In addition, we design a mechanism for EMR permission grant and revocation so that hospital can verify attribute set to determine whether to grant and revoke access permission through blockchain, so it is no longer necessary for ciphertext re-encryption and key update. Finally, security analysis, security proof and performance evaluation demonstrate that the proposed scheme is safe and effective in practical applications.

Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermo-magnetic fields and moving load

  • Alazwari, Mashhour A.;Esen, Ismail;Abdelrahman, Alaa A.;Abdraboh, Azza M.;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.12 no.3
    • /
    • pp.231-251
    • /
    • 2022
  • Dynamic behavior of temperature-dependent Reddy functionally graded (RFG) nanobeam subjected to thermomagnetic effects under the action of moving point load is carried out in the present work. Both symmetric and sigmoid functionally graded material distributions throughout the beam thickness are considered. To consider the significance of strain-stress gradient field, a material length scale parameter (LSP) is introduced while the significance of nonlocal elastic stress field is considered by introducing a nonlocal parameter (NP). In the framework of the nonlocal strain gradient theory (NSGT), the dynamic equations of motion are derived through Hamilton's principle. Navier approach is employed to solve the resulting equations of motion of the functionally graded (FG) nanoscale beam. The developed model is verified and compared with the available previous results and good agreement is observed. Effects of through-thickness variation of FG material distribution, beam aspect ratio, temperature variation, and magnetic field as well as the size-dependent parameters on the dynamic behavior are investigated. Introduction of the magnetic effect creates a hardening effect; therefore, higher values of natural frequencies are obtained while smaller values of the transverse deflections are produced. The obtained results can be useful as reference solutions for future dynamic and control analysis of FG nanobeams reinforced nanocomposites under thermomagnetic effects.

On the Geometric Equivalence of Asymmetric Factorial Designs

  • Park, Dong-Kwon;Park, Eun-Hye
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.777-786
    • /
    • 2006
  • Two factorial designs with quantitative factors are called geometrically equivalent if the design matrix of one can be transformed into the design matrix of the other by row and column permutations, and reversal of symbol order in one or more columns. Clark and Dean (2001) gave a sufficient and necessary condition (which we call the 'gCD condition') for two symmetric factorial designs with quantitative factors to be geometrically equivalent. This condition is based on the absolute value of the Euclidean(or Hamming) distance between pairs of design points. In this paper we extend the gCD condition to asymmetric designs. In addition, a modified algorithm is applied for checking the equivalence of two designs.

Design of Single-input Direct Adaptive Fuzzy Logic Controller Based on Stable Error Dynamics

  • Park, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.44-49
    • /
    • 2001
  • For minimum phase systems, the conventional fuzzy logic controllers (FLCs) use the error and the change-of-error as fuzzy input variables. Then the control rule table is a skew symmetric type, that is, it has UNLP (Upper Negative and Lower Positive) or UPLN property. This property allowed to design a single-input FLC (SFLC) that has many advantages. But its control parameters are not automatically adjusted to the situation of the controlled plant. That is, the adaptability is still deficient. We here design a single-input direct adaptive FLC (SDAFLC). In the AFLC, some parameters of the membership functions characterizing the linguistic terms of the fuzzy rules are adjusted by an adaptive law. The SDAFLC is designed by a stable error dynamics. We prove that its closed-loop system is globally stable in the sense that all signals involved are bounded and its tracking error converges to zero asymptotically. We perform computer simulations using a nonlinear plant and compare the control performance between the SFLC and the SDAFLC.

  • PDF

Design of Variable Cutoff Frequency Two-Dimensinal FIR Filters (가변차단 주파수 2차원FIR필터의 설계)

  • Sang-Uk Lee
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.12
    • /
    • pp.427-434
    • /
    • 1983
  • Singular Value Decomposition of 2-D Finite Impulse Response was used to design a variable cutoff 2-D FIR filters. Basically this approach allows to use 1-D techniques while dealing with 2-D filters. In this paper, our aim is to provide away of easily tuning 2-D FIR filters. For example, one would like to adjust interactively the cutoff frequency of a 2-D Circular Symmetric low-pass filter on an image processing system. The decomposition of 2-D FIR filters along with techniques available for tuning 1-D FIR filters allows such adjustment. Several design examples are shown.

  • PDF

Design of T-S(Takagi-Sugeno) Fuzzy Control Systems Under the Bound on the Output Energy

  • Kim, Kwang-Tae;Joh, Joog-Seon;Kwon, Woo-Hyen
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.44-49
    • /
    • 1999
  • This paper presents a new T-S(Tae-Sugeno) fuzzy controller design method satisfying the output energy bound. Maximum output energy via a quadratic Lyapunov function to obtain the bound on output energy is derived. LMI(Linear Matrix Inequality) problems which satisfy an output energy bound for both of the continuous-time and discrete-time T-S fuzzy control system are also derived. Solving these LMIs simultaneously, we find a common symmetric positive definite matrix P which guarantees the global asymptotic stability of the system and stable feedback gains K's satisfying the output energy bound. A simple example demonstrates validity of the proposed design method.

  • PDF

A design of $90^{\circ}$ hybrid phase shifter using ferroelectric materials (강유전체를 사용한 $90^{\circ}$ 하이브리드 구조의 위상 변위기 설계)

  • Kim, Young-Tae;Ryu, Han-Cheol;Lee, Su-Jae;Kwak, Min-Hwan;Moon, Seung-Eon;Kim, Hyeong-Seok;Park, Jun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1919-1921
    • /
    • 2002
  • In this paper, we were designed the ferroelectric phase shifter using 3-dB, $90^{\circ}$ branch-line hybrid coupler with two ports terminated in symmetric phase-controllable reflective networks. The design of phase shifter is based on reflection theory of terminating circuits. In order to find the optimum conditions of reflect phase, the effect of a change of capacitance and transmission line connected with two coupled ports of a coupler have been investigated. To obtain more accurate design parameters, finite element method is applied. We were showed large phase variation with small capacitance variation in the parallel connection of capacitor and transmission line by using EM-simulation and circuit-simulation.

  • PDF

Application of Process Planning System for Non-Axisymmetric Deep Drawing Products (비축대칭 디프 드로잉 제품에 대한 공정설계 시스템의 적용)

  • 박동환;최병근;박상봉;강성수
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.591-603
    • /
    • 1999
  • A computer-aided process planning system for rotationally symmetric deep drawing products has been developed. The application for non-axisymmetric components, however, has been reported yet. Therefore, this study investigates process sequence design in deep drawing process and constructs a computer-aided process planning system for non-axisymmetric motor frame products with elliptical shape. The system developed consists of three modules. The first one os a 3-dimensional modeling module to calculate surface area for non-axisymmetric products. The second one is a blank design module that creates an oval-shaped blank with the identical surface area. The third one is a process planning module based on production rules that play the best important roles in an expert system for manufacturing. The production rules are generated and upgraded by interviewing with field engineers. Especially, drawing coefficient, punch and die radii are considered as main design parameters. The constructed system for elliptical deep drawing products would be very useful to reduce lead time and improve accuracy for production.

  • PDF