• Title/Summary/Keyword: symmetric and periodic structure

Search Result 7, Processing Time 0.021 seconds

Analysis of Symmetric and Periodic Open Boundary Problem by Coupling of FEM and Fourier Series

  • Kim, Young Sun
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.130-134
    • /
    • 2013
  • Most electrical machines like motor, generator and transformer are symmetric in terms of magnetic field distribution and mechanical structure. In order to analyze these problems effectively, many coupling techniques have been introduced. This paper deals with a coupling scheme for open boundary problem of symmetric and periodic structure. It couples an analytical solution of Fourier series expansion with the standard finite element method. The analytical solution is derived for the magnetic field in the outside of the boundary, and the finite element method is for the magnetic field in the inside with source current and magnetic materials. The main advantage of the proposed method is that it retains sparsity and symmetry of system matrix like the standard FEM and it can also be easily applied to symmetric and periodic problems. Also, unknowns of finite elements at the boundary are coupled with Fourier series coefficients. The boundary conditions are used to derive a coupled system equation expressed in matrix form. The proposed algorithm is validated using a test model of a bush bar for the power supply. And the each result is compared with analytical solution respectively.

THE PERIODIC JACOBI MATRIX PROCRUSTES PROBLEM

  • Li, Jiao-Fen;Hu, Xi-Yan
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.569-582
    • /
    • 2010
  • The following "Periodic Jacobi Procrustes" problem is studied: find the Periodic Jacobi matrix X which minimizes the Frobenius (or Euclidean) norm of AX - B, with A and B as given rectangular matrices. The class of Procrustes problems has many application in the biological, physical and social sciences just as in the investigation of elastic structures. The different problems are obtained varying the structure of the matrices belonging to the feasible set. Higham has solved the orthogonal, the symmetric and the positive definite cases. Andersson and Elfving have studied the symmetric positive semidefinite case and the (symmetric) elementwise nonnegative case. In this contribution, we extend and develop these research, however, in a relatively simple way. Numerical difficulties are discussed and illustrated by examples.

Dynamics and instability of the Karman wake mode induced by periodic forcing

  • Mureithi, Njuki W.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.265-280
    • /
    • 2004
  • This paper presents some fundamental results on the dynamics of the periodic Karman wake behind a circular cylinder. The wake is treated like a dynamical system. External forcing is then introduced and its effect investigated. The main result obtained is the following. Perturbation of the wake, by controlled cylinder oscillations in the flow direction at a frequency equal to the Karman vortex shedding frequency, leads to instability of the Karman vortex structure. The resulting wake structure oscillates at half the original Karman vortex shedding frequency. For higher frequency excitation the primary pattern involves symmetry breaking of the initially shed symmetric vortex pairs. The Karman shedding phenomenon can be modeled by a nonlinear oscillator. The symmetrical flow perturbations resulting from the periodic cylinder excitation can also be similarly represented by a nonlinear oscillator. The oscillators represent two flow modes. By considering these two nonlinear oscillators, one having inline shedding symmetry and the other having the Karman wake spatio-temporal symmetry, the possible symmetries of subsequent flow perturbations resulting from the modal interaction are determined. A theoretical analysis based on symmetry (group) theory is presented. The analysis confirms the occurrence of a period-doubling instability, which is responsible for the frequency halving phenomenon observed in the experiments. Finally it is remarked that the present findings have important implications for vortex shedding control. Perturbations in the inflow direction introduce 'control' of the Karman wake by inducing a bifurcation which forces the transfer of energy to a lower frequency which is far from the original Karman frequency.

An Effective Method to Treat The Boundary Pixels for Image Compression with DWT (DWT를 이용한 영상압축을 위한 경계화소의 효과적인 처리방법)

  • 서영호;김종현;김대경;유지상;김동욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.618-627
    • /
    • 2002
  • In processing images using 2 dimensional Discrete Wavelet Transform(2D-DWT), the method to process the pixels around the image boundary may affect the quality of image and the cost to implement in hardware and software. This paper proposed an effective method to treat the boundary pixels, which is apt to implement in hardware and software without losing the quality of the image costly. This method processes the 2-D image as 1-D array so that 2-D DWT is performed by considering the image with the serial-sequential data structure (Serial-Sequential Processing). To show the performance and easiness in implementation of the proposed method, an image compression codec which compresses image and reconstructs it has been implemented and experimented. It included log-scale fried quantizer, but the entropy coder was not implemented. From the experimental results, the proposed method showed the SNR of almost the same SNR(Signal to Noise Ratio) to the Periodic Expansion(PE) method when the compression ratio(excluding entropy coding) of 2:1, 15.3% higher than Symmetric Expansion(SE) method, and 9.3% higher than 0-pixel Padding Expansion(ZPE) method. Also PE method needed 12.99% more memory space than the proposed method. By considering only the compression process, SE and ZPE methods needed additional operations than the proposed one. In hardware implementation, the proposed method in this paper had 5.92% of overall circuit as the control circuit, while SE, PE, and ZPE method has 22%, 21,2%, and 11.9% as the control circuit, respectively. Consequently, the proposed method can be thought more effective in implementing software and hardware without losing any image quality in the usual image processing applications.

Performance Analysis of the XMESH Topology for the Massively Parallel Computer Architecture (대규모 병렬컴퓨터를 위한 교차메쉬구조 및 그의 성능해석)

  • 김종진;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.5
    • /
    • pp.720-729
    • /
    • 1995
  • We proposed a XMESH(crossed-mesh) topology as a suitable interconnection for the massively parallel computer architectures, and presented performance analysis of the proposed interconnection topology. Horizontally, the XMESH has the same links as those of the toroidal mesh(TMESH) or toroid, but vertically, it has diagonal cross links instead of the vertical links. It reveals desirable interconnection characteristics for the massively parallel computers as the number of nodes increases, while retaining the same structural advantages of the TMESH such as the symmetric structure, periodic placement of subsystems, and constant degree, which are highly recommended features for VLSI/WSI implementations. Furthermore, n*k XMESH can be easily expanded without increasing the diameter as long as n.leq.k.leq.n+4. Analytical performance evaluations show that the XMESH has a shorter diameter, a shorter mean internode distance, and a higher message completion rate than the TMESH or the diagonal mesh(DMESH). To confirm these results, an optimal self-routing algorithm for the proposed topology is developed and is used to simulate the average delay, the maximum delay, and the throughput in the presence of contention. In all cases, the XMESH is shown to outperform the TMESH and the DMESH regardless of the communication load conditions or the number of nodes of the networks, and can provide an attractive alternative to those networks in implementing massively parallel computers.

  • PDF

The Study on New Radiating Structure with Multi-Layered Two-Dimensional Metallic Disk Array for Shaping flat-Topped Element Pattern (구형 빔 패턴 형성을 위한 다층 이차원 원형 도체 배열을 갖는 새로운 방사 구조에 대한 연구)

  • 엄순영;스코벨레프;전순익;최재익;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.667-678
    • /
    • 2002
  • In this paper, a new radiating structure with a multi-layered two-dimensional metallic disk array was proposed for shaping the flat-topped element pattern. It is an infinite periodic planar array structure with metallic disks finitely stacked above the radiating circular waveguide apertures. The theoretical analysis was in detail performed using rigid full-wave analysis, and was based on modal representations for the fields in the partial regions of the array structure and for the currents on the metallic disks. The final system of linear algebraic equations was derived using the orthogonal property of vector wave functions, mode-matching method, boundary conditions and Galerkin's method, and also their unknown modal coefficients needed for calculation of the array characteristics were determined by Gauss elimination method. The application of the algorithm was demonstrated in an array design for shaping the flat-topped element patterns of $\pm$20$^{\circ}$ beam width in Ka-band. The optimal design parameters normalized by a wavelength for general applications are presented, which are obtained through optimization process on the basis of simulation and design experience. A Ka-band experimental breadboard with symmetric nineteen elements was fabricated to compare simulation results with experimental results. The metallic disks array structure stacked above the radiating circular waveguide apertures was realized using ion-beam deposition method on thin polymer films. It was shown that the calculated and measured element patterns of the breadboard were in very close agreement within the beam scanning range. The result analysis for side lobe and grating lobe was done, and also a blindness phenomenon was discussed, which may cause by multi-layered metallic disk structure at the broadside. Input VSWR of the breadboard was less than 1.14, and its gains measured at 29.0 GHz. 29.5 GHz and 30 GHz were 10.2 dB, 10.0 dB and 10.7 dB, respectively. The experimental and simulation results showed that the proposed multi-layered metallic disk array structure could shape the efficient flat-topped element pattern.

Color Filter Based on a Sub-wavelength Patterned Metal Grating (광파장 이하 주기를 갖는 금속 격자형 컬러필터)

  • Lee, Hong-Shik;Yoon, Yeo-Taek;Lee, Sang-Shin;Kim, Sang-Hoon;Lee, Ki-Dong
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.383-388
    • /
    • 2007
  • A color filter was demonstrated incorporating a patterned metal grating in a quartz substrate. The filter is created in a metal layer perforated with a symmetric two-dimensional array of circular holes, with the pitch smaller than the wavelength of the visible light. A finite-difference time-domain simulation was performed to analyze the device by investigating the effect of structural parameters like the grating height, the period, the hole size, and the refractive index of the hole-filling material on its performance. The device performance was especially optimized by controlling the refractive index of the material comprising the holes of the grating. And two different devices were fabricated by means of the e-beam direct writing with the following design parameters: the grating height of 50 nm, the two pitches of 340 nm for the red color and 260 nm for the green color. For the prepared device with the period of 340 nm, the center wavelength was 680 nm and the peak transmission 57%. And for the other device with the pitch of 260 nm, the center wavelength was 550 nm and the peak transmission was 50%. The filling of the hole with a material whose refractive index is matched to that of the substrate has led to an increase of ${\sim}15%$ in the transmission efficiency.