• Title/Summary/Keyword: symantic network analysis

Search Result 1, Processing Time 0.013 seconds

A Study of Perception of Golfwear Using Big Data Analysis (빅데이터를 활용한 골프웨어에 관한 인식 연구)

  • Lee, Areum;Lee, Jin Hwa
    • Fashion & Textile Research Journal
    • /
    • v.20 no.5
    • /
    • pp.533-547
    • /
    • 2018
  • The objective of this study is to examine the perception of golfwear and related trends based on major keywords and associated words related to golfwear utilizing big data. For this study, the data was collected from blogs, Jisikin and Tips, news articles, and web $caf{\acute{e}}$ from two of the most commonly used search engines (Naver & Daum) containing the keywords, 'Golfwear' and 'Golf clothes'. For data collection, frequency and matrix data were extracted through Textom, from January 1, 2016 to December 31, 2017. From the matrix created by Textom, Degree centrality, Closeness centrality, Betweenness centrality, and Eigenvector centrality were calculated and analyzed by utilizing Netminer 4.0. As a result of analysis, it was found that the keyword 'brand' showed the highest rank in web visibility followed by 'woman', 'size', 'man', 'fashion', 'sports', 'price', 'store', 'discount', 'equipment' in the top 10 frequency rankings. For centrality calculations, only the top 30 keywords were included because the density was extremely high due to high frequency of the co-occurring keywords. The results of centrality calculations showed that the keywords on top of the rankings were similar to the frequency of the raw data. When the frequency was adjusted by subtracting 100 and 500 words, it showed different results as the low-ranking keywords such as J. Lindberg in the frequency analysis ranked high along with changes in the rankings of all centrality calculations. Such findings of this study will provide basis for marketing strategies and ways to increase awareness and web visibility for Golfwear brands.