• Title/Summary/Keyword: switching power converter

Search Result 1,785, Processing Time 0.027 seconds

Analysis of Hybrid Converter with Wide Voltage Range Operation

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1099-1107
    • /
    • 2019
  • A soft switching converter with wide voltage range operation is investigated in this paper. A series resonant converter is implemented to achieve a high circuit efficiency with soft switching characteristics on power switches and rectifier diodes. To improve the weakness of the narrow voltage range in LLC converters, an alternating current (ac) power switch is used on the primary side to select a half-bridge or full-bridge resonant circuit to implement 4:1 voltage range operation. On the secondary-side, another ac power switch is adopted to select a full-wave rectifier or voltage-doubler rectifier to achiever an additional 2:1 output voltage range. Therefore, the proposed resonant converter has the capacity for 8:1 (320V~40V) wide output voltage operation. A single-stage hybrid resonant converter is employed in the study circuit instead of a two-stage dc converter to achiever wide voltage range operation. As a result, the study converter has better converter efficiency. The theoretical analysis and circuit characteristics are verified by experiments with a prototype circuit.

A Study on Isolated Buck-Boost Converter by Discontinuous Conduction Mode (전류불연속 모드 절연형 벅-부스트 컨버터에 관한 연구)

  • Kwak, D.K.;Lee, B.S.;Kim, C.S.;Shim, J.S.;Park, Y.J.
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.173-174
    • /
    • 2010
  • In this paper, authors propose a new buck-boost converter of discontinuous conduction mode (DCM) added electric isolation. The proposed converter with DCM eliminates the complicated circuit control requirement and reduces the size of components. The general converters of high efficiency are made that the power loss of the used switching devices is minimized. To achieve the soft switching operation of the used control switches, the proposed converter uses a lossless snubber capacitor. The proposed converter achieves the soft-switching for all switching devices without increasing their voltage and current stresses. The result is that the switching loss is very low and the efficiency of converter is high. The soft switching operation of the proposed converter is verified by digital simulation and experimental results.

  • PDF

Low Loss Soft Switching Boost Converter (저 손실형 소프트 스위칭 승압형 컨버터)

  • Park, So-Ri;Jang, Su-Jin;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.34-36
    • /
    • 2007
  • A new soft switching boost converter is proposed in this paper. The conventional boost converter generates switching losses at turn on and off. Because of that, the whole system efficiency is reduced. The proposed converter utilizes soft switching method using an auxiliary switch and resonant circuit. Thus, the converter reduces switching losses lower than ones of hard switching method. The proposed soft switching boost converter can be applied to photovoltaic system, power factor correction circuit and so on.

  • PDF

Design and analysis of high efficiency soft switching boost converter (고효율 소프트 스위칭 부스트 컨버터의 설계 및 해석)

  • Park, So-Ri;Park, Sang-Hoon;Cha, Kil-Ro;Won, Chung-Yuen;Jung, Yong-Chae;Lee, Su-Won
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.121-123
    • /
    • 2008
  • A high efficiency soft switching boost converter is proposed in this paper. The conventional boost converter generates switching losses at turn on and off. Because of those, the whole system efficiency is reduced. The proposed converter utilizes soft switching method using resonant circuit with an auxiliary switch. Therefore, the proposed converter reduces switching losses lower than the hard switching. The proposed soft switching boost converter can be applied to photovoltaic system, power factor correction circuit and etc.

  • PDF

A Study on AC/DC Converter Design of High Efficiency for Inverter Resistance Welder (인버터 저항용접기의 전력효율 향상을 위한 AC/DC 컨버터 설계에 관한 연구)

  • Kwak, D.K.;Jung, W.S.;Kang, W.C.
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.40-41
    • /
    • 2016
  • The inverter resistance welder requires AC/DC converter of high efficiency because the converter changes a commercial ac power source to low voltage dc power source. Harmonic components that occur in the conversion process of converter decrease system power factor and deal great damage in electric power system. To improve such problems, this paper proposes a high efficiency AC/DC converter for inverter resistance welder. The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit. As a result, the proposed AC/DC converter obtains low switching power loss and high efficiency.

  • PDF

Soft-Switching Boost Chopper Type DC-DC Power Converter with a Single Auxiliary Passive Resonant Snubber

  • Nakamura Mantaro;Myoui Takeshi;Abudullh Al Mamun;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.256-260
    • /
    • 2001
  • This paper presents boost and buck and buck-boost DC-DC converter circuit topologies of high-frequency soft switching transition PWM chopper type DC-DC high power converters with a single auxiliary passive resonant snubber. In the proposed boost power converter circuits operating under a principle of ZCS turn-on and ZVS turn-off commutation schemes, the capacitor and inductor in the auxiliary passive resonant circuit works as the loss less resonant snubber. In addition to this, the switching voltage and current peak stresses as well as EMI and RFI noises can be basically reduced by this single passive resonant snubber. Moreover, it is proved that converter circuit topologies with a passive resonant snubber are capable of solving some problems of the conventional hard switching PWM processing based on high-ferquency pulse modulation operation principle. The simulation results of this converter are discussed as compared with the experimental ones. The effectiveness of this power converter with a single passive resonant snubber is verified by the 5kW experimental breadboad set up.

  • PDF

Design of the power generator system for photovoltaic modules

  • Park, Sung-Joon
    • Journal of IKEEE
    • /
    • v.12 no.4
    • /
    • pp.239-245
    • /
    • 2008
  • In this paper, a dc-dc power converter scheme with the FPGA based technology is proposed to apply for solar power system which has many features such as the good waveform, high efficiency, low switching losses, and low acoustic noises. The circuit configuration is designed by the conventional control type converter circuit using the isolated dc power supply. This new scheme can be more widely used for industrial power conversion system and many other purposes. Also, I proposed an efficient photovoltaic power interface circuit incorporated with a FPGA based DC-DC converter and a sine-pwm control method full-bridge inverter. The FPGA based DC-DC converter operates at high switching frequency to make the output current a sine wave, whereas the full-bridge inverter operates at low switching frequency which is determined by the ac frequency. As a result, we can get a 1.72% low THD in present state using linear control method. Moreover, we can use stepping control method, we can obtain the switching losses by Sp measured as 0.53W. This paper presents the design of a single-phase photovoltaic inverter model and the simulation of its performance.

  • PDF

Zero-Voltage and Zero-Current Switching Interleaved Two-Switch Forward Converter

  • Chu, Enhui;Bao, Jianqun;Song, Qi;Zhang, Yang;Xie, Haolin;Chen, Zhifang;Zhou, Yue
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1413-1428
    • /
    • 2019
  • In this paper, a novel zero-voltage and zero-current switching (ZVZCS) interleaved two switch forward converter is proposed. By using a coupled-inductor-type smoothing filter, a snubber capacitor, the parallel capacitance of the leading switches and the transformer parasitic inductance, the proposed converter can realize soft-switching for the main power switches. This converter can effectively reduce the primary circulating current loss by using the coupled inductor and the snubber capacitor. Furthermore, this converter can reduce the reverse recovery loss, parasitic ringing and transient voltage stress in the secondary rectifier diodes caused by the leakage inductors of the transformer and the coupled inductance. The operation principle and steady state characteristics of the converter are analyzed according to the equivalent circuits in different operation modes. The practical effectiveness of the proposed converter was is illustrated by simulation and experimental results via a 500W, 100 kHz prototype using the power MOSFET.

A winding design of Tap Level Converter (Tap Level 제어 전력 변환기의 권선설계)

  • Chun J.H.;Lee H.W.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.53-55
    • /
    • 2006
  • In this paper discusses winding methode of single phase AC-DC reversible power converter The reversible power converter driven by multi Tap winding at both side switching control. It has a advantage that simple drive of main switching device. and obtain load current of good quality without filter circuit and free from noise or isolation for lower switching frequency. In this research, study on current type converter and inverter circuit that consist for possibility of AC-DC/DC-AC multi-level reversible converter.

  • PDF

Optimized Design of Bi-Directional Dual Active Bridge Converter for Low-Voltage Battery Charger

  • Jeong, Dong-Keun;Ryu, Myung-Hyo;Kim, Heung-Geun;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.468-477
    • /
    • 2014
  • This study proposes an optimized design of a dual active bridge converter for a low-voltage charger in a military uninterrupted power supply (UPS) system. The dual active bridge converter is among various bi-directional DC/DC converters that possess a high-efficiency isolated bi-directional converter. In the general design, the zero-voltage switching(ZVS) region is reduced when the battery voltage is high. By contrast, efficiency is low because of high conduction losses when the battery voltage is low. Variable switching frequency is applied to increase the ZVS region and the power conversion efficiency, depending on battery voltage changes. At the same duty, the same power is obtained regardless of the battery voltage using the variable switching frequency. The proposed method is applied to a 5 kW prototype dual active bridge converter, and the experimental results are analyzed and verified.