• 제목/요약/키워드: switching power converter

검색결과 1,785건 처리시간 0.023초

A ZV-ZCT Boost Converter using an Auxiliary Resonant Circuit (보조 공진회로를 갖는 영전압-영전류 천이 부스트 컨버터)

  • Jung, Doo-Yong;Kim, Jun-Gu;Ryu, Dong-Kyun;Song, In-Beom;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.298-305
    • /
    • 2012
  • This paper proposes a soft switching boost converter with an auxiliary resonant circuit. The auxiliary resonant circuit is added to a general boost converter and that is composed of one switch, one diode, one inductor and two capacitors. The resonant network helps the main switch to operate with a zero voltage switching(ZVS) and auxiliary switch also operates under the zero voltage and zero current conditions. The soft switching range is extended by the auxiliary switch and it is possible to control the proposed converter with a pulse width modulation(PWM). The ZVS and ZCS techniques make switching losses decreased and efficiency of the system improved. A theoretical analysis is verified through the simulation and experiment.

Soft Switching Boost Converter using a Single Switch (단일 스위치를 사용한 소프트 스위칭 부스트 컨버터)

  • Jung, Doo-Yong;Kim, Jae-Hyeng;Ji, Young-Hyok;Won, Chung-Yuen;Jung, Yong-Chae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.211-219
    • /
    • 2009
  • In this paper, a detailed analysis of zero current or zero voltage switching boost converter using a single switch is described. The proposed topology is capable of decreasing switching loss of IGBT device using soft switching technique. As a results, it can be reduced size and weight of passive elements. Based on the mode analysis, practical design considerations are presented. We confirm the converter topology, principle of operation and simulation results obtained from the PSIM software. The performance of the proposed converter is verified by with 1kW(400V, 2.5A) prototype circuit operated at 30kHz.

Soft-Switching Buck-Boost Converter with High Power Factor for PAM Inverter System

  • K. Taniguchi;T. Watanabe;T. Morizane;Kim, N. ura;Lee, Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.264-269
    • /
    • 1998
  • A proposed soft-switching buck-boost PWM converter has a lot of advantages, Viz., electric isolation, a high power factor, low switching losses, low EMI noise, reduction of the voltage and current stresses, etc. In a new PFC converter, the switching device is replaced by the loss-less snubber circuit to achieve the zero voltage switching (ZVS) at the maximum current. However, the charging current of the capacitor in the loss-less snubber circuit distorts the input current waveforms. To improve the input current waveform, a new duty factor control method is proposed in this paper.

  • PDF

Three-Level ZVZCS DC/DC Converter using a Assistance Power Sources of the RailRoad Vehicles (철도차량 보조전원용 Three-Level ZVZCS DC/DC 컨버터)

  • Rho S.C.;Lim E.K.;Yang S.H.;Kim Y.H.
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.880-885
    • /
    • 2003
  • Using a Assistance Power Sources of the Railroad Vehicles Three-Level ZVZCS DC/DC Converter is presented in this paper. The proposed three-Level DC/DC Converter Is to achieved zero voltage and zero current switching for the two Main switches. phase shift method is used a parastic capacitance by reverse recovery characteritics in a inner diode of the switching device. Also. using a diode second part of the Transformer by the simple auxiliary circuit for the achieved zero current switching of the Auxiliary switch. For the ZVZCS movement of the all switching devices is analyzed and verified under a 5kW, in the 100kHz switching frequency.

  • PDF

A Study A on Internal Loss Characteristics and Efficiency Improvement of Low Power Flyback Converter Using WBG Switch (WBG 스위치를 적용한 소용량 플라이백 컨버터의 내부손실 특성과 효율 개선에 관한 연구)

  • Ahn, Tae Young;Yoo, Jeong Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • 제19권4호
    • /
    • pp.99-104
    • /
    • 2020
  • In this paper, efficiency and loss characteristics of GaN FET were reported by applying it into the QR flyback converter. In particular, for the comparison of efficiency characteristics, QR flyback converter experimental circuits with Si FET and with GaN FET were separately produced in 12W class. As a result of the experiment, the experimental circuit of the QR flyback converter using GaN FET reached a high efficiency of 90% or more when the load power was 2W or more, and the maximum efficiency was observed to be about 92%, and the maximum loss power was about 1.1W. Meanwhile, the efficiency of the experimental circuit with Si FET increased as the input voltage increased, and the maximum efficiency was observed to be about 82% when the load power was 9W or higher, and the maximum loss power was about 2.8W. From the results, it is estimated that that in the case of the experimental circuit applying the GaN FET switch, the power conversion efficiency was improved as the switching loss and conduction loss due to on-resistance were reduced, and the internal loss due to the synchronous rectifier was minimized. Consequently, it is concluded that the GaN FET is suitable for under 20W class power supply unit as a high efficiency power switch.

Capacitive Coupling LLC Wireless Power Transfer Converter Through Glasses of Electric Vehicles (전기자동차의 유리를 통한 커패시티브 커플링 LLC 무선 전력 전송 컨버터)

  • You, Young-Soo;Yi, Kang-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제21권6호
    • /
    • pp.542-545
    • /
    • 2016
  • This work proposes a capacitive coupling-based wireless battery charging circuit that is built with vehicle glasses for electric vehicles. A capacitive coupling wireless power transfer offers many advantages, such as low metal impact and low energy transfer efficiency changes in accordance with changes in position. However, a large coupling capacitor is needed for high power transfer. Therefore, a new capacitive coupling-based wireless power transfer LLC resonant converter built with the glasses of an electric vehicle is proposed. The proposed converter is composed of coupling capacitors with glasses of an electric vehicle and two transformers for impedance transformation. The proposed LLC converter can transfer large power and obtain high efficiency with zero voltage switching. The validity and features of the proposed circuit is verified by experimental results with a 1.2 kW prototype.

The High efficiency Buck Power Conversion System for Photovoltaic Power Generator (태양광발전을 위한 고효율 승압형 전력변환장치)

  • 박경원;김영철;김준홍;서기영;고희석;이현우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 한국조명전기설비학회 1997년도 추계학술발표회논문집
    • /
    • pp.88-92
    • /
    • 1997
  • Power conversion system must be increased swiching frequency in order to achieve a small size, a light weight and a low noise, However, the swiches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. In this paper, the authors propose a DC-DC boost converter of high power by partial resonant switch method (PRSM). The switching devices in a proposed circuit are operated with soft swiching and the control technique of those is simplified for switch to drive in constant duty cycle. The partial resonant circuit makes use of a inductor suing step up and a condenser of loss-less snubber. Also the circuit has a merit which is taken to increase of efficiency, as if makes to a regeneration at input source of accumulated energy in snubber condenser without loss of snubber in conventional cirvuit. The result is the the switching loss is very low and the efficiency of system is high. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

DC-DC Converter of High Efficiency by using Loss-less Snubber Capacitor (무손실 스너버 커패시터에 의한 고효율의 DC-DC 컨버터)

  • Kwak, Dong-Kurl;Lee, Bong-Seob;Kim, Choon-Sam;Shim, Jae-Sun
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1049-1050
    • /
    • 2006
  • This paper is proposed to a novel DC-DC converter operated high efficiency for loss-less snubber capacitor. The general converters of high efficiency is made that the power loss of the used switching devices is minimized. To achieve the soft switching operation of the used control switches, the proposed converter is constructed by using a loss-less snubber capacitor. The proposed converter achieves the soft-switching for all switching devices without increasing their voltage and current stresses. The result is that the switching loss is very low and the efficiency of converter is high. The soft switching operation of the proposed converter is verified by digital simulation and experimental results.

  • PDF

A Soft-Switching Technique of Matrix Converters using Auxiliary Switch (보조스위치를 이용한 매트릭스 컨버터(Matrix Converter)의 소프트스위칭 기법)

  • Um, Tae-Wook;Kim, Yoon-Ho;Kim, Seung-Mo
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.519-524
    • /
    • 2002
  • This paper presents a soft-switching technique of single-stage power conversion Matrix Converter of AC-AC converters. Conventional hard-switching method is limited to operate at low switching frequency due to increased switching loss. In this paper, by additional auxiliary switch circuits, it is shown that the main switch of the matrix converter operate as a zero-voltage switches, and the auxiliary switch operate as a zero current switch. Finally, the soft-switching technique with auxiliary switches is compared with conventional hard-switching technique, and Is analyzed by simulation.

  • PDF

Development of Medical Ruby Laser Power Supply using LLC Resonant Converter (LLC 공진형 컨버터를 적용한 의료용 루비 레이저 전원장치 개발)

  • Kim, Dong-Hyun;Jung, Jae-Hun;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제63권7호
    • /
    • pp.924-928
    • /
    • 2014
  • LLC resonant converter is used to control laser power density in ruby laser power supply. Zero voltage switching(ZVS) is implemented to minimize the switching loss by the LLC resonant converter. Laser output power is investigated and experimented by changing the output current. That current is controled by the charging voltage of capacitor. From those results, we obtained the maximum laser output of 1.94J at the discharge current of 860A and the pulse repetition rate of 1Hz.