• Title/Summary/Keyword: switching angle control

Search Result 184, Processing Time 0.033 seconds

Asymmetrical Pulse Width Modulated AC Chopper to Improve the Input Power Factor (전원식 력술 향상을 위한 비대칭형 PWM고이쵸퍼)

  • 장도현;송종환;원종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1230-1241
    • /
    • 1991
  • Asymmetrical pulse width modulated(APWM) control technique for AC chopper is proposed which can improve the input power factor. The ideal switching function for the proposed technique is derived and its optimal slope to maintain the input power factor to unity is calculated. By digital simulation several characteristics are investigated theoretically and then compared with those of the conventional PWM and the phase angle control technique. In order to maintain the input power factor to unity the optimal slope and the average value of the ideal switching function are calculated. The experimental results show a good agreement with the calculated ones, which proves the feasibility of the proposed technique.

Multi-level Inverter Using 3-Phase isolated Transformers (3상 절연형 변압기를 이용한 다중레벨)

  • Lee, Hwa-Chun;Song, Sung-Gun;Park, Sung-Jun;Kim, Kwang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1134-1135
    • /
    • 2007
  • In this paper, we proposed the isolated multi-level inverter using 3-phase transformers. It makes possible to use a single DC power source due to employing low frequency transformers. In this inverter, the number of transformer could be reduced comparing with an exiting 3-phase multi-level inverter using single phase transformer. Also, using phase angle control method with switching frequency equal to output fundamental frequency, harmonics component of output voltage and switching losses can be reduced. Finally, we made a prototype inverter to clarify the proposed electric circuit and reasonableness of control signal.

  • PDF

A Multipulse-Voltage Source Rectifier System with a Three-Phase Diode Circuit in order to improve the Input Current Waveforms (입력 전류 파형 개선을 위한 다펄스 3상 다이오드 전압원 정류 시스템)

  • Im, Seong-Goun;Park, Hyun-Chul;Lee, Seong-Ryong;Yu, Chul-Ro
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.853-855
    • /
    • 1993
  • In this paper, a further improved system obtaining very low distorted waveforms of input ac currents of three phase rectifier circuit is proposed. The proposed system consists of an uncomplicated 24 pulse diode bridge rectifier that is transformerless, by adding only switching circuit which consists of two switchs to conventional system. Also to optimum the effectiveness or the harmonic reduction, the optimum turn ratio of an autotransformer and the optimum switching control angle are decided by computer simulation. And then, the voltage waveform obtained has a total harmonic distortion of 8.1%, and the predominant harmonics 23th and 25th. This paper describes operation principle, analysis of the waveforms of input voltage and current. The theoretial results are verified through simulation.

  • PDF

High Efficiency Drive of SRM with Neural Network and Genetic Algorithms (신경회로망과 GA를 이용한 SRM의 고효율운전에 관한 연구)

  • 오석규
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.521-524
    • /
    • 2000
  • The switched reluctance motor(SRM) drive system provides a good adjustable speed characteristics. However higher torque ripple are one of the few disadvantages of the SRM drives. The SRM would have to operated with an MMF waveform specified for switching angle and phase voltage. This paper proposes control modelling method using ANN(Artificial Neural Network) and GA(Genetic Algorithm) that are used to control switch-on angles and input voltage.

  • PDF

Asymmetrical PWM Technique with Fundamental Voltage Control and Harmonic Voltage Elimnation in AC Choppers (비대칭형 PWM 교류쵸퍼의 기본파 전압제어 및 고조파 전압제거)

  • Jang, Do-Hyun;Choe, Gyu-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1067-1070
    • /
    • 1992
  • Optimal Asymmetrical Pulse-width Modulated (APWM) technique for ac chopper is proposed which can improve the input power factor and eliminate the harmonics of output voltage up to a specified order, and also enables linear control of the fundamental component of the output voltage. The PWM switching patterns at the specified phase angle are obtained by Newton-Raphson method and theoretical comparisons are made with other PWM and APWM technique.

  • PDF

Speed Control of Switched Reluctance Motor Using the One Chip Micoro-Computer (원칩 마이컴을 이용한 스위치드 리럭턴스 전동기의 속도제어)

  • 신규재
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.222-224
    • /
    • 2000
  • This Paper investigates the speed control of Switched reluctance motor(SRM) using one chip microcomputer The SRM has the advantages of simple structure low rotor inertia. and high efficiency. The Position sensor is essential in SRM in order to synchronize the Phase excitation to the rotor position. The proposed system consists of phase locked loop controller, switching angle controller and inverter. The Performances in the Proposed system are verified through the experiment.

  • PDF

A Study on the Four Quadrant Operation of SRM Drive (SRM의 4상한 구동을 위한 제어방식)

  • Kang Yu-Jung;Park Sung-Jun;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.45-48
    • /
    • 2002
  • Switched Reluctance Generator attracts much attention because of high efficiency, simple controllability with traction drive. But the theories that have been adopted as SRG control methods are complicated up to the present. This paper proposes reference current limitation strategy for stable generation and switching angle control in motoring mode. The proposed method is verified by simulation and experiments.

  • PDF

Modeling and Direct Power Control Method of Vienna Rectifiers Using the Sliding Mode Control Approach

  • Ma, Hui;Xie, Yunxiang;Sun, Biaoguang;Mo, Lingjun
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.190-201
    • /
    • 2015
  • This paper uses the switching function approach to present a simple state model of the Vienna-type rectifier. The approach introduces the relationship between the DC-link neutral point voltage and the AC side phase currents. A novel direct power control (DPC) strategy, which is based on the sliding mode control (SMC) for Vienna I rectifiers, is developed using the proposed power model in the stationary ${\alpha}-{\beta}$ reference frames. The SMC-based DPC methodology directly regulates instantaneous active and reactive powers without transforming to a synchronous rotating coordinate reference frame or a tracking phase angle of grid voltage. Moreover, the required rectifier control voltages are directly calculated by utilizing the non-linear SMC scheme. Theoretically, active and reactive power flows are controlled without ripple or cross coupling. Furthermore, the fixed-switching frequency is obtained by employing the simplified space vector modulation (SVM). SVM solves the complicated designing problem of the AC harmonic filter. The simplified SVM is based on the simplification of the space vector diagram of a three-level converter into that of a two-level converter. The dwelling time calculation and switching sequence selection are easily implemented like those in the conventional two-level rectifier. Replacing the current control loops with power control loops simplifies the system design and enhances the transient performance. The simulation models in MATLAB/Simulink and the digital signal processor-controlled 1.5 kW Vienna-type rectifier are used to verify the fast responses and robustness of the proposed control scheme.

Full Bridge Resonant Inverter Using Asymmetrical Control with Resonant-frequency Tracking for Ultrasonic Cleaning Applications

  • Jittakort, Jirapong;Sangswang, Anawach;Naetiladdanon, Sumate;Koompai, Chayant;Chudjuarjeen, Saichol
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1150-1159
    • /
    • 2017
  • Flexibility in the power control of ultrasonic transducers has remained a challenge for cleaning applications. This paper introduces a modification of the existing piezoelectric ceramic transducer (PCT) circuit to increase the range of operation through its impedance characteristics. The output power is controlled using the asymmetrical voltage-cancellation (AVC) method. Together with a phase-locked loop control, the switching frequency of the inverter is automatically adjusted to maintain a lagging phase angle under load-parameter variations during the cleaning process. With the proposed modification, the region of the zero-voltage switching (ZVS) operation is extended, which results in a wider range of output power control. A hardware prototype is constructed and the control algorithm is implemented using an STM32F4 microcontroller. Simulation and experimental results are provided to verify the proposed method for a 50-W PCT. The operating frequency and output power ranges under study are 37 - 41 kHz and 15.8 - 50 W, respectively.

A Study on the Reduction of Onboard Transformer Inrush Current of Electric Railway (전기철도 차량 내 변압기의 여자돌입전류 저감에 관한 연구)

  • Huh, Jae-Sun;Kang, Byoung-Wook;Shin, Hee-Sang;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2125-2130
    • /
    • 2010
  • The neutral section on electric railway system is significant sector in order to prevent short circuit of two electric powers. However, while electric trains pass the neutral section, those speed is decreased and the accident of AC electric traction system and the electric train would be occurred. So the countermeasures are urgently needed. The automatic power switching technology system that is current being research and development is system to improve these problems. Because main object of this system is power change using static switch in the neutral section, it's expected to cause a variety of transients. Especially, onboard transformer inrush current for electric railway train can be occurred more than rated current according to switching time. Therefore, the analysis and improvement are needed to ensure the stability of this system. In this paper, we analyze the operating characteristics of the automatic power switching technology system. Especially, it reviews inrush current according to the closing phase angle. And we propose control plan of inrush current considering the case that voltage is maintained due to counter electromotive force and regenerative braking operation of electric railway train. Finally, the proposed control scheme was reviewed using the transient analysis program.