• Title/Summary/Keyword: switch curve

Search Result 32, Processing Time 0.029 seconds

Application of FDC and LDC using HSPF Model to Support Total Water Load Management System (오염총량관리제 지원을 위한 유역모형 기반 유량지속곡선 및 부하지속곡선 활용방안)

  • Lee, Eun Jeong;Kim, Tae Geun;Keum, Ho Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.33-45
    • /
    • 2018
  • In this study, we discussed the application of Watershed model and Load Duration Curves (LDC) in Total Water Load Management System. The Flow Duration Curves (FDC) and the LDC were generated using the results of the daily HSPF model and analyzed on monthly or yearly flow duration variability, and non-point pollutant discharge loads by entire flow conditions. As a result of the calibration and verification of the HSPF model, both the flow and the water quality were appropriately simulated. The simulated values were used to generate the Flow Duration Curve and the Load Duration Curve, and then the excess rate by entire flow conditions was analyzed. The point and non-point pollutant discharge loads for entire flow conditions were calculated. It is possible to evaluate the variability of water quality in specific flow duration through the curves reflecting the flow duration variability and to confirm the characteristics of the pollutant source. For a more scientific Total Water Load Management System, it is necessary to switch from a current system to a system that can take into account the entire flow conditions. For this, the application of the watershed model and load duration curve is considered to be the best alternative.

Interpretation of Quality Statistics Using Sampling Error (샘플링오차에 의한 품질통계 모형의 해석)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.2
    • /
    • pp.205-210
    • /
    • 2008
  • The research interprets the principles of sampling error design for quality statistics models such as hypothesis test, interval estimation, control charts and acceptance sampling. Introducing the proper discussions of the design of significance level according to the use of hypothesis test, then it presents two methods to interpret significance by Neyman-Pearson and Fisher. Second point of the study proposes the design of confidence level for interval estimation by Bayesian confidence set, frequentist confidential set and fiducial interval. Third, the content also indicates the design of type I error and type II error considering both productivity and customer claim for control chart. Finally, the study reflects the design of producer's risk with operating charistictics curve, screening and switch rules for the purpose of purchasing and subcontraction.

Polymer Deformable Mirror for Optical Auto Focusing

  • Wang, Jen-Liang;Chen, Tyng-Yow;Liu, Chingwei;Chiu, Chen-Wei Edward;Su, Guo-Dung John
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.817-819
    • /
    • 2007
  • A low-stress organic polymer membrane is proposed as a deformable mirror that can be incorporated into a cellular phone camera to achieve auto focusing without motor-type moving parts. It is demonstrated that our fabricated device has an optical power of 20 diopters and can switch focus in 14 ms. The surface roughness of the organic membrane is measured around 15 nm, less than ${\lambda}$/20 of the visible light. With curve fitting, we found that the actuated membrane is almost parabolic in shape, which leads to less aberration than spherical surfaces. It is suitable for reflective-optics systems.

  • PDF

A method Based on Boundary Deformation for Planar Grid Generation

  • Liu, Xinru;Liu, Duanfeng;Han, Xuli
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.63-67
    • /
    • 2009
  • This paper puts forward a method based on the boundary deformation for planar grid generation. Many methods start with the special properties of grid and switch to the solution of a direct optimization or a non-linear minimum cost flow. Though with high theoretical significance, it's hard to realize due to the extremely complicated computing process. This paper brings out the automatic generation of planar grid by studying the boundary deformational properties of planar grid, which leads to uniform grid and enjoys the simplicity of computation and realization.

A Study on Cavity Pressure and Tensile Strength of Injection Molding (사출성형에서 캐비티압력과 인장강도에 관한 연구)

  • Yoo, J.H.;Kim, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.110-116
    • /
    • 1994
  • In this research, the tensile strength of molded parts and pressure distribution were analyzed to study the cavity filling stage and packing stage in injection molding. The measurement of cavity pressure was obtained by a data acquisition system with the installation of transducers in the cavity. Molded parts were tested by a universal testing machine to obtain the tensile strength. For the experimental work, the tensile strength of molded parts increased with longer packing time and exact freezing time of the gate was obtained by a cavity pressure curve. In addition, the effect of packing did not occur and tensile strength was almost constant after early 1.5 sec of the freezing time of gate. Density tended to be higher about 0.2% due to a larger degree of mold temperature and melt temperature. Also, changing pressure in the cavity was effectively sensed. Thereafter, the possibility of the development of pattern recognition expert system was confirmed on the basis of the experimental results.

  • PDF

Cause Analyses of Boiler Accident and Their Counter-plans Based on Accident Cases (사고사례에 기초한 보일러 사고의 원인분석 및 대책)

  • 윤상권;장통일;임현교
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.131-140
    • /
    • 2003
  • An accident involving a boiler can result in a disaster since it handles high-pressurized steam so that it may cause an explosion. Therefore, the boiler is very susceptible to industrial accidents. This thesis aimed to develop counter-plans to prevent industrial accidents involved the boiler. At first after collecting accident cases involving boilers, a survey on the trait of them was carried out. Ant on the other hand a qualitative analysis was conducted to draw out hazardous components in the boiler itself and their inherent relative importance was assessed. Through this procedure, 'negligence of unsafe condition' was noted as the major cause for unsafe acts whereas 'fault in work procedure' for unsafe condition. In the meanwhile, results of a hazard analysis using FMEA technique ranked gas safety devices, a switch preventing gas from under-pressurization, protect relays high. In particular, it was pointed out that the water feeding and steam subsystem has more components in hazard than other subsystems. Considering these analyses results, counter-plans to improve safety management was suggested also.

Design of Robust, Optimal Controller using Sliding Mode (슬라이딩 모드를 이용한 견실 최적 제어기 설계)

  • Byun, Ji-Young;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.580-583
    • /
    • 2003
  • The general time optimal control law provides the optimal solution for a minimum time control problem. But in most real systems with disturbances and model uncertainties, the time optimal control law leads to chattering effect. This chattering effect can cause the system to be unstable. Therefore, we propose a robust optimal control algorithm for the nonlinear second order systems with model uncertainty. The proposed algorithm is combined with bang-bang control and sliding mode control. Thus the proposed algorithm has two state space regions to implement to control algorithm. In each region, the appropriate linear or nonlinear feedback control law is used satisfying the dynamic system equations. Simulation results show the superiority of the proposed controller in comparison with pure time optimal control(bang-bang control).

  • PDF

마이크로플라즈마 전류 스위치 및 응용

  • Chae, Gyeol-Yeo;Kim, Myeong-Min;Mun, Cheol-Hui;Lee, Sang-Yeon;Lee, Seung-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.433-433
    • /
    • 2010
  • A microplasma current switch (MPCS) for a device operated in a current mode like organic light-emitting diodes (OLEDs), which features matrix addressability and current switching, is presented as well as its architecture and operational principle. The MPCS utilizes the intrinsic memory and conductivity of plasmas to achieve matrix addressability and current switching. We have fabricated a $100\;mm\;{\times}\;100\;mm$ MPCS panel in which its cell pitch is $1080\;{\mu}m\;{\times}\;1080\;{\mu}m$. The matrix addressability and current switching were verified. In addition, the current-voltage (I-V) characteristic of the unit cell was measured when plasmas were ignited. In principle, the scheme of the MPCS is equivalent to that of a double Langmuir probe diagnosing plasma parameters except for their relative dimensions to a plasma volume. Accordingly, the I-V characteristic was analyzed by a double Langmuir probe theory, and the plasma density and electron temperature were estimated from the I-V curve using a collisional double Langmuir probe theory.

  • PDF

Design of Thermo-optic Switch with Low Power Consumption by Electrode Optimization (전극 구조의 최적화를 통한 저전력 열광학 스위치 설계)

  • Choi, Chul-Hyun;Kong, Chang-Kyeng;Lee, Min-Woo;Sung, Jun-Ho;Lee, Seung-Gol;Park, Se-Geun;Lee, El-Hang;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.5
    • /
    • pp.266-271
    • /
    • 2009
  • We designed a thermo-optic switch based on a directional coupler with not only a high extinction ratio but also significantly low power consumption. The switch operates by using the thermo-optic effect of the polymer which the refractive index changes by heating the electrode. If the electrode is not powered (OFF), the input light will be coupled completely to the other waveguide. When the electrode is powered at a certain level (ON), input light launched into the input waveguide will remain in that waveguide due to the lower index adjusted in the other waveguide. The switch based on the directional coupler was designed using the generalized extinction ratio curve and the lateral shift of the input waveguide. The coupling length is 1,610 ${\mu}m$ and the extinction ratios are -28 and -30 dB for ON and OFF states, respectively. The electrode structures were optimized by thermal analysis. The transported heat into the waveguide is increased, as the electrode width (w) is increased and the center distance between the electrode and the waveguide (d) is decreased. Also, because the heat generated in the electrode affects the other waveguide, the temperature difference between two waveguides is varied as the given w and d. There are specific conditions which have the maximum of the temperature difference. That of the temperature difference is increased as the width and the temperature of the electrode are increased. Especially, when the switch is designed using the condition with the maximum of the temperature difference for switching, the temperature of the electrode can be decreased. We expect this condition will be the novel method for the reduction of the power consumption in a thermo-optic switch.

Maximum Power Point Tracking Method Without Input side Voltage and current Sensor of DC-DC Converter for Thermoelectric Generation (열전발전을 위한 DC-DC Converter의 입력측 전압·전류 센서없는 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.569-575
    • /
    • 2020
  • Recently, research on renewable energy technologies has come into the spotlight due to rising concerns over the depletion of fossil fuels and greenhouse gas emissions. Demand for portable electronic and wearable devices is increasing, and electronic devices are becoming smaller. Energy harvesting is a technology for overcoming limitations such as battery size and usage time. In this paper, the V-I characteristic curve and internal resistance of thermal electric devices were analyzed, and MPPT control methods were compared. The Perturbation and Observation (P&O) control method is economically inefficient because two sensors are required to measure the voltage and current of a Thermoelectric Generator(TEG). Therefore, this paper proposes a new MPPT control method that tracks MPP using only one sensor for the regulation of the output voltage. The proposed MPPT control method uses the relationship between the output voltage of the load and the duty ratio. Control is done by periodically sampling the output voltage of the DC-DC converter to increase or decrease the duty ratio to find the optimal duty ratio and maintain the MPP. A DC-DC converter was designed using a cascaded boost-buck converter, which has a two-switch topology. The proposed MPPT control method was verified by simulations using PSIM, and the results show that a voltage, current, and power of V=4.2 V, I=2.5 A, and P=10.5 W were obtained at the MPP from the V-I characteristic curve of the TEG.