• Title/Summary/Keyword: swirl-stabilized

Search Result 48, Processing Time 0.026 seconds

A study on flame bifurcation due to inlet mixture temperature and swirl strength in a swirl turbulent combustor (스월 난류연소기의 흡입공기온도, 스월세기에 따른 연소불안정 발생 메커니즘에 대한 연구)

  • Kim, Jong-Chan;Sung, Hong-Gye;Ryu, Hyeok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.377-380
    • /
    • 2007
  • Large Eddy Simulation has been conducted to investigate both stable and unstable flame structures in a swirl turbulent combustor. While a flame is stabilized with periodic dynamic structure at 600K, a slight increase in the flame temperature of inlet mixture, 660K, lead to bifurcation of flame at swirl angle 45 degrees. It was observed that both swirl number and mixture temperature affect a flame bifurcation and the former is a major parameter. One major mechanism contributing to the unstable flame is that the local flame speed overshadows the local flow velocity near the wall of the combustor.

  • PDF

A Study on the Turbulent Flowfield in the Annular Combustor with the Multi Swirl Injectors (환형연소기의 Multi Swirl Injector 상호간섭 영향에 관한 연구(1))

  • Kim, Jong-Chan;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.289-292
    • /
    • 2009
  • Injector dynamics of multi swirl injectors in an annular combustor have been investigated by LES(Large Eddy Simulation) turbulent model with MPI parallel computation technique. The present study employs the LM6000 lean premixed swirl-stabilized annular combustor. Real shape combustor is simulated in order to investigate the detail interaction mechanism among multi-injectors. The strong vortex breakdown occurs at the impinging surface between the adjacent injectors so that the complex and strong oscillatory pressure propagates inside of the combustor. Tangential pressure fluctuation mode was captured by including multi injectors in computational domain.

  • PDF

Combustion and Atomization Characteristics of Swirl-Stabilized Spray Burner (선회 분무 연소기의 분무 및 연소특성 분석)

  • Yoon, S.P.;Ahn, J.H.;Kim, Y.M.;Kim, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.434-440
    • /
    • 2000
  • The atomization characteristics of air-assist atomizer which is surrounded by a coflowing airstream is investigated. The air-assist, coflow air stream had swirl imparted to them in the same direction with 45 degree's angle swillers. The fuel and air entered the combustor at ambient temperature and the combustor was operated in an unconfined environment. Diesel fuel was used for all the experiments. Drop size and mean velocity are reported for certain distances downstream from the nozzle. The droplet size and velocity measurements were performed using a two-component phase/Doppler particle analyzer and velocity profiles across the entire flowfield are presented.

  • PDF

A Study on the Combustion Characteristics of a Hybrid Cyclone Jet Combustor (하이브리드 사이클론 제트 연소기의 연소특성에 관한 연구)

  • Jung, Won-Suk;Hwang, Chul-Hong;Lee, Gyou-Young;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.149-155
    • /
    • 2002
  • A promising new approach to achieve low pollutants emission and improvement of flame stabilities is tested experimentally using a hybrid cyclone jet combustor employing both premixed and diffusion combustion mode, Three kind of nozzles are used for LNG(Liquified Natural Gas) as a fuel. The combustor is operated by two method, One is ATI(Air Tangential Injection) mode, generated swirl flow by air as general swirl combustor, and the other is PTI(Premixed gas Tangential Injection) mode, The PTI mode consists of diffusion flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion flame. The results showed that the stable region of the PTI mode is more larger than the ATI mode. In addition, the reduction of NOx emission in PTI mode, as compared with that for the ATI mode is at least 50% in stable region. Also, even using the low calorific fuel as $CO_2$-blended gas, the cyclone jet combustor has high performance of flame stability.

  • PDF

Hydrogen Enrichment Effects on NOx Formation in Pre-mixed Methane Flame (수소 첨가가 예혼합 메탄 화염의 NOx 생성에 미치는 영향)

  • Kim, H.S.;Ahn, K.Y.;Gupta, A.K.
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.1
    • /
    • pp.75-84
    • /
    • 2007
  • The effects of hydrogen enrichment to methane on NOx formation have been investigated with swirl stabilized pre-mixed hydrogen enriched methane flame in a laboratory-scale pre-mixed combustor(nominally of 5,000 kcal/hr). The hydrogen enriched methane fuel and air were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame stability was examined for different amount of hydrogen addition to the methane fuel, different combustion air flow rates and swirl strengths by comparing equivalence ratio at the lean flame limit. The hydrogen addition effects and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using gas analyzers, and OH chemiluminescence techniques to provide information about species concentration of emission gases and flowfield. The results of NOx and CO emissions were compared with a diffusion flame type combustor. The results show that the lean stability limit depends on the amount of hydrogen addition and the swirl intensity. The lean stability limit is extended by hydrogen addition, and is reduced for higher swirl intensity at lower equivalence ratio. The addition of hydrogen increases the NOx emission, however, this effect can be reduced by increasing either the excess air or swirl intensity. The NOx emission of hydrogen enriched methane premixed flame was lower than the corresponding diffusion flame under the fuel lean condition.

Combustion Characteristics of Hydrogen/Methane gas in Pre-mixed Swirl Flame (메탄/수소 혼합 가스의 예혼합 선회 연소특성)

  • Kim, Han-Seok;Lee, Young-Duk;Choi, Won-Seok;Ahn, Kook-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.4
    • /
    • pp.276-282
    • /
    • 2008
  • The effects of hydrogen enrichment to methane have been investigated with swirl-stabilized premixed hydrogen-enriched methane flame in a laboratory-scale pre-mixed combustor. The hydrogen-enriched methane fuel and air were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for different amount of hydrogen addition to the methane fuel and different swirl strengths. The hydrogen addition effects and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using micro-thermocouple, particle image velocity meter (PIV) and chemiluminescence techniques to provide information about flow field. The results show that the flame area increases at upstream of reaction zone because of increase in ignition energy from recirculation flow for increase in swirl intensity. The flame area is also increased at the downstream zone by recirculation flow because of increase in swirl intensity which results in higher centrifugal force. The higher combustibility of hydrogen makes reaction faster, raises the temperature of reaction zone and expands the reaction zone, consequently recirculation flow to reaction zone is reduced. The temperature of reaction zone increases with hydrogen addition even though the adiabatic flame temperature of the mixture gas decreases with increase in the amount of hydrogen addition in this experiment condition because the higher combustibility of hydrogen reduces the cooler recirculation flow to the reaction zone.

The Study on Flame Structure and NOx Emissions by Swirl Numbers and Fuel-Air Mixing Length in a Dump Combustor Gas Turbine (모형 가스터빈 연소기에서의 스월수와 혼합길이에 따른 화염구조와 NOx배출에 관한 실험적 연구)

  • Choi, Do-Wook;Kim, Gyu-Bo;Jeon, Chung-Hwan;Song, Ju-Hun;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.849-857
    • /
    • 2009
  • The experimental study was performed to investigate the effects of partial premixing, varying the equivalence ratio, mixing degree, swirl intensity, mixing length on the characteristics of flame structure and NOx emission. Experiments were conducted in a dump combustor at 1 bar using methane as fuel. Inlet air temperature was 570K. OH chemiluminescence images were acquired with an ICCD camera. As a result of the experimental investigation of characteristics of flame and NOx emission in partial premixed combustor, we can conclude the results as below. With the increase of swirl number, The flame length decreases and the flame width increases and it helps flame stabilization. It means that lean flammability limit is extended. With the increase of mixing of fuel-air length ratio, Flame goes to be stabilized and NOx emission and $OH^{\ast}$ intensity decrease. Through the comparison of preceding results, It is possible that the exhausted NOx emission from a gas turbine combustor will be able to predict through the $OH^{\ast}$ intensity.

Effect of a Preprocessing Method on the Inversion of OH* Chemiluminescence Images Acquired for Visualizing SNG Swirl-stabilized Flame Structure (SNG 선회 안정화 화염구조 가시화를 위한 OH* 자발광 이미지 역변환에서 전처리 효과)

  • Ahn, Kwang Ho;Song, Won Joon;Cha, Dong Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.24-31
    • /
    • 2015
  • Flame structure, which contains a useful information for studying combustion instability of the flame, is often quantitatively visualized with PLIF (planar laser-induced fluorescence) and/or chemiluminescence images. The latter, a line-integral of a flame property, needs to be preprocessed before being inverted, mainly due to its inherent noise and the axisymmetry assumption of the inversion. A preprocessing scheme utilizing multi-division of ROI (region of interest) of the chemiluminescence image is proposed. Its feasibility has been tested with OH PLIF and $OH^*$ chemiluminescence images of SNG (synthetic natural gas) swirl-stabilized flames taken from a model gas turbine combustor. It turns out that the multi-division technique outperforms two conventional ones: those are, one without preprocessing and the other with uni-division preprocessing, reconstructing the SNG flame structure much better than its two counterparts, when compared with the corresponding OH PLIF images. It is also found that the Canny edge detection algorithm used for detecting edges in the multi-division method works better than the Sobel algorithm does.

An Experimental Study on Flame Structure and Combustion Instability Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서 화염구조와 연소불안정 특성에 대한 실험적 연구)

  • Park, Sung-Soon;Kim, Min-Ki;Yoon, Ji-Su;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.26-34
    • /
    • 2011
  • The present work addresses structural characteristics of natural gas flames in a lean premixed swirl-stabilized combustor with an attention focused on the effect of the formation of recirculation zones on the combustion instability. It is known that the recirculation zone plays an important role in stabilizing a turbulent, premixed natural gas flames by providing a source of heat or radicals to the incoming premixed fuel and air. To improve our understanding of the role of recirculation zones, the flame structure was investigated for various mixture velocities, equivalence ratios and swirl numbers. The optically accessible combustor allowed for the application of laser diagnostics, and Particle Image Velocimetry(PIV) measurements was used to characterize the flame structure under both cold flow conditions and hot flow conditions. Dynamic pressures were also measured to investigate characteristics of combustion at the same time. The results indicates that the formation of recirculation zone is strongly related to the occurrence of thermo-acoustic instabilities.