• Title/Summary/Keyword: swing phase

Search Result 255, Processing Time 0.026 seconds

A Gait Phase Classifier using a Recurrent Neural Network (순환 신경망을 이용한 보행단계 분류기)

  • Heo, Won ho;Kim, Euntai;Park, Hyun Sub;Jung, Jun-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.518-523
    • /
    • 2015
  • This paper proposes a gait phase classifier using a Recurrent Neural Network (RNN). Walking is a type of dynamic system, and as such it seems that the classifier made by using a general feed forward neural network structure is not appropriate. It is known that an RNN is suitable to model a dynamic system. Because the proposed RNN is simple, we use a back propagation algorithm to train the weights of the network. The input data of the RNN is the lower body's joint angles and angular velocities which are acquired by using the lower limb exoskeleton robot, ROBIN-H1. The classifier categorizes a gait cycle as two phases, swing and stance. In the experiment for performance verification, we compared the proposed method and general feed forward neural network based method and showed that the proposed method is superior.

Kinematic Analysis of Service Movement In Each Position of Soft Tennis (포지션별 정구 플랫서비스의 운동학적분석)

  • Kim, Hun-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.221-231
    • /
    • 2002
  • The purpose of this study was to clarify the differences in service patterns of a forward and backward soft tennis players using 3D motion analyzer. Subjects were 4 forward players of $24.0\pm5.23$yrs and 4 backward players of $23.5\pm1.73$yrs. The results were as following: 1. There was no difference among each positions on swinging-time. The longest racket swinging-time was in the phase of takeback, the second one was in follow-through. The shortest one was in the phase of forward-swing so called force production phase, which had an influence on ball's velocity. 2. The racket speed on impact was 16.3m/s in forward subject and 19.53m/s in backward subject, when each velocity of balls was 44.6m/s, 52.9m/s. Although there was no significant difference along by positions, backward subject showed faster result. 3. The maximum speed of each performance was reached before the impact, and the speed at impact along by positions did not show any significant difference. The summation of velocity was measured in good order as following; hip, shoulder, elbow, wrist, top of racket. 4. In the angular velocity of all examine except one, the angular velocity of forearm was bigger than the one of racket top although there was no statistically significant difference between forward and backward subject. 5. The service grip of the forward players was shorter than that of backward players.

Development of a Portable Gait Phase Detection System for Patients with Gait Disorders

  • Ahn Seung Chan;Hwang Sung Jae;Kang Sung Jae;Kim Young Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.145-150
    • /
    • 2005
  • A new gait detection system using both FSR (force sensing resistor) sensors and a gyrosensor was developed to detect various gait patterns. FSR sensors were put in self-designed shoe insoles and a gyrosensor was attached to the heel of a shoe. An algorithm was also developed to determine eight different gait transitions during four gait phases: heel-strike, foot-flat, heel-off and swing. The developed system was evaluated from nine heathy mans and twelve hemiplegic patients. Healthy volunteers were asked to walk in various gait patterns: level walking, fore-foot walking and stair walking. Only the level walking was performed in hemiplegic patients. The gait detection system was compared with a optical motion analysis system and the outputs of the FSR sensors. In healthy subjects, the developed system detected successfully more than $99\%$ for both level walking and fore-foot walking. For stair walking, the successful detection rate of the system was above$97\%$. In hemiplegic patients, the developed system detected approximately 98% of gait transitions. The developed gait phase detection system will be helpful not only to determine pathological gait phases but also to apply prosthetics, orthotics and functional electrical stimulation for patients with various gait disorders.

The Comparative Analysis of Kinematic And Emg on Power Walking and Normal Gait (파워워킹과 일반보행의 운동학적 및 EMG 비교분석)

  • Cho, Kyu-Kwon;Kim, You-Sin;Kim, Eun-Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.85-95
    • /
    • 2006
  • The purpose of this study of which 10 University students in their twenties are the objects was to examine the causal differences of kinematic and electromyography during power walking and normal gait. We came to the following conclusions. 1) It took less time to stance phase, swing phase and whole gait time during power walking compared with normal gait. 2) During power walking, the step length and step length and lower limb length are longer than that of normal gait. 3) During power walking, ankle joint angle became more plantar flexed at LIC and RTO, knee joint angle become more flexed, so did hip joint angle at LIC and RTO. Besides during power walking the shoulder joint angle movement was bigger and elbow joint angle was more flexed as the trait of power walking. 4) During power walking, through out the phase the muscle activity of all muscle was higher expecially the muscle activity of Biceps brachii, gastrocnemius medialis, gastrocnemius lateralis, Soleus was higher. Therefore during power walking, one's scope of activity and muscle activity is relatively higher than those of normal gait, so power walking helps one strengthen muscular power and energy metabolism. This will be useful information for those who are interested in diet and well-being.

Difference in Gait Characteristics During Attention-Demanding Tasks in Young and Elderly Adults

  • In Hee Cho;Seo Yoon Park;Sang Seok Yeo
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.3
    • /
    • pp.64-70
    • /
    • 2023
  • Purpose: This study investigated the influence of attention-demanding tasks on gait and measured differences in the temporal, spatial and kinematic characteristics between young healthy adults and elderly healthy adults. Methods: We recruited 16 healthy young adults and 15 healthy elderly adults in this study. All participants performed two cognitive tasks: a subtraction dual-task (SDT) and working memory dual-task (WMDT) during gait plus one normal gait. Using the LEGSys+ system, knee and hip-joint kinematic data during stance and swing phase and spatiotemporal parameter data were assessed in this study. Results: In the elderly adult group, attention-demanding tasks with gait showed a significant decrease in hip-joint motion during the stance phase, compared to the normal gait. Step length, stride length and stride velocity of the elderly adult group were significantly decreased in WMDT gait compared to normal gait (p<0.05). In the young adult group, kinematic data did not show any significant difference. However, stride velocity and cadence during SDT and WMDT gaits were significantly decreased compared to those of normal gait (p<0.05). Conclusion: We determined that attention-demanding tasks during gait in elderly adults can induce decreased hip-joint motion during stance phase and decreased gait speed and stride length to maintain balance and prevent risk of falling. We believe that understanding the changes during gait in older ages, particularly during attention-demanding tasks, would be helpful for intervention strategies and improved risk assessment.

The Effect of Visual Stimulation on Gait Parameters During Backward Walking in Healthy Individuals (정상인의 후방 보행 시 시각 자극이 보행 변수에 미치는 영향)

  • Han-Byeol Sung;Ji-won Seo;Jung-Hyun Cho;Young-Keun Woo
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.91-99
    • /
    • 2024
  • Purpose: Backward walking has shown positive effects on gait recovery in rehabilitation patients. It is increasingly used as an aerobic training method in rehabilitation populations, inducing more sensory and motor stimulation than forward walking. Therefore, the purpose of this study is to investigate the effects of visual stimulation during backward walking. Methods: Twenty-seven healthy adults with a visual acuity of 0.8 or higher participated in the study. To compare the effects of visual stimulation during various walking conditions among healthy individuals, the participants randomly selected cards numbered one to six and walked a distance of 10 meters. Walking ability was measured using Optogait. Results: Statistically significant differences were observed in speed, stride, and percentages of single support and contact phase during backward walking. Within eyes-closed conditions during backward walking, significant differences were found in percentages of single support, terminal stance, and contact phase. Moreover, the percentage of terminal swing significantly differed during backward walking with head turn conditions. Conclusion: Gait parameters such as speed, stride, and percentages of single support and contact phase were higher during backward walking than forward walking. These results indicate that backward walking involves multiple sensory systems and varying conditions.

A Study on Kinematic Analysis of Trunk and Lower Extremities in Stance Phase of Walking according to Turning Direction (보행 방향 전환 시 입각기 하지 및 체간의 운동형상학적 분석)

  • Oh, Tae-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.2
    • /
    • pp.88-95
    • /
    • 2013
  • Purpose: The purpose of this study was to conduct an analysis of kinematics of lower extremities and trunk in stance phase of walking according to turning direction. Methods: Ten university students (five male, five female) who were in their 20s (mean age was 20.6 years old) participated in this study. Participants did not have participants did not have any problem with skeletal muscular system. We used the "Qualisys motion capture system" for analysis of trunk and lower extremity movement in stance phase of walking according to turning direction. We collected data while subjects walked a distance of 10 m, and at the 6 m line, subjects were required to turn to the left side and the right leg was positioned in stance phase and the left leg was positioned in swing. For data analysis, the SPSS for Windows ver. 20.0 statistics program was used in performance of one way analysis of variance according to turning direction. Results: Significant difference of trunk and lower extremities was observed for turning direction according to walking cycle (p<0.05). Upper trunk movement showed a greater increase at three dimensions than lower trunk, and in heel off phase, pelvic movement showed a greater increase than lower trunk (p<0.05). In 45 degree and 90 degrees of turning direction, all movements of trunk and lower extremities were significantly different among three events of stance phase (p<0.05). Conclusion: We suggest that three-dimensional movement analysis of trunk and lower extremities during turning movement was very important in order to indicate increasing balance or walking ability for people with impaired movement or walking.

Comparison of Lower Extremity Kinematics and Kinetics during Downhill and Valley-shape Combined Slope Walking

  • Jeong, Jiyoung;Shin, Choongsoo S.
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.161-166
    • /
    • 2016
  • Objective: The purpose of this study was to determine the knee and ankle joint kinematics and kinetics by comparing downhill walking with valley-shape combined slope walking. Method: Eighteen healthy men participated in this study. A three-dimensional motion capture system equipped with eight infrared cameras and a synchronized force plate, which was embedded in the sloped walkway, was used. Obtained kinematic and kinetic parameters were compared using paired two-tailed Student's t-tests at a significance level of 0.05. Results: The knee flexion angle after the mid-stance phase, the mean peak knee flexion angle in the early swing phase, and the ankle mean peak dorsiflexion angle were greater during downhill walking compared with valley-shape combined slope walking (p < 0.001). Both the mean peak vertical ground reaction force (GRF) in the early stance phase and late stance phase during downhill walking were smaller than those values during valley-shape combined slope walking. (p = 0.007 and p < 0.001, respectively). The mean peak anterior GRF, appearing right after toe-off during downhill walking, was also smaller than that of valley-shape combined slope walking (p = 0.002). The mean peak knee extension moment and ankle plantar flexion moment in late stance phase during downhill walking were significantly smaller than those of valley-shape combined slope walking (p = 0.002 and p = 0.015, respectively). Conclusion: These results suggest that gait strategy was modified during valley-shape combined slope walking when compared with continuous downhill walking in order to gain the propulsion for lifting the body up the incline for foot clearance.

Relationship between lower limb alignment and knee adduction moment during ambulation in the healthy elderly (노인의 하지 정렬 상태와 보행 시 슬관절 내전 모멘트 특성)

  • 조유미;홍정화;문무성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.24-24
    • /
    • 2003
  • For the elderly, achieving a close-to-normal ambulation is important for activities of daily life. Recent researches of SE(Silver Engineering) restoring physical ability would help the elderly by developing the advanced gait assisting devices and orthoses. For the applications using the advanced technologies, the gait characteristics of the elderly must be understood. However, a few studies were performed to investigate the physiological or pathological gaits. The purpose of this study is to provide the gait analysis data and also to investigate relationships between alignment of the lower limb, foot progression angle and knee joint moments in the healthy elderly. By participating a total of 20 healthy elderly persons in this study, the following facts were found: 1) Cadence showed 114.8 steps/min, gait speed showed 1.05 m/s, time per a stride showed 1.06 sec, time per a step showed 0.53 sec, single-supporting phase was 0.41 sec, double-supporting phase was 0.24 sec, stride length was 1.04m, Step length was 0.56m; 2) The maximum knee flexion angle through swing phase showed left 46.82$^{\circ}$, right 40.19$^{\circ}$ and the maximum knee extension angle showed left -1.32$^{\circ}$, right 2.01$^{\circ}$. Knee varus showed left 26.90$^{\circ}$, right 30.93$^{\circ}$; 3) The maximum knee flexion moment showed left 0.363 Nm/kg, right 0.464 Nm/kg, The maximum knee extension moment showed left 0.389 Nm/kg, right 0.463 Nm/kg. The maximum knee adduction moment showed left 0.332 Nm/kg, right 0.379 Nm/kg. The maximum internal rotational moment showed left 0.13 Nm/kg, right 0.140 Nm/kg; 4) The subjects who had varus alignment of the lower extremity had statistically higher in knee adduction moment in mid stance phase; and 5) The subjects who had large foot progression angle had statistically lower in knee adduction moment in late stance phase.

  • PDF

Design of the 1.9-GHz CMOS Ring Voltage Controlled Oscillator using VCO-gain-controlled delay cell (이득 제어 지연 단을 이용한 1.9-GHz 저 위상잡음 CMOS 링 전압 제어 발진기의 설계)

  • Han, Yun-Tack;Kim, Won;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.72-78
    • /
    • 2009
  • This paper proposes a low phase noise ring voltage controlled oscillator(VCO) with a standard $0.13{\mu}m$ CMOS process for PLL circuit using the VCO-gain-controlled Delay cell. The proposed Delay cell architecture with a active resistor using a MOS transistor. This method can reduced a VCO gain so that improve phase noise. And, Delay cell consist of Wide-Swing Cascode current mirror, Positive Latch and Symmetric load for low phase noise. The measurement results demonstrate that the phase noise is -119dBc/Hz at 1MHz offset from 1.9GHz. The VCO gain and power dissipation are 440MHz/V and 9mW, respectively.