• Title/Summary/Keyword: swing pattern

Search Result 90, Processing Time 0.029 seconds

Analysis of the Lower Extremity's Coupling Angles During Forward and Backward Running (앞으로 달리기와 뒤로 달리기 시 하지 커플링각 분석)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.149-163
    • /
    • 2006
  • The purpose of this study was to compare the lower extremity's joint and segment coupling patterns between forward and backward running in subjects who were twelve healthy males. Three-dimensional kinematic data were collected with Qualisys system while subjects ran to forward and backward. The thigh internal/external rotation and tibia internal/external rotation, thigh flexion/extension and tibia flexion/extension, tibia internal/external rotation and foot inversion/eversion, knee internal/external rotation and ankle inversion/eversion, knee flexion/extension and ankle inversion/eversion, knee flexion/extension and ankle flexion/extension, and knee flexion/extension and tibia internal/external rotation coupling patterns were determined using a vector coding technique. The comparison for each coupling between forward and backward running were conducted using a dependent, two-tailed t-test at a significant level of .05 for the mean of each of five stride regions, midstance(1l-30%), toe-off(31-50%), swing acceleration(51-70%), swing deceleration(71-90), and heel-strike(91-10%), respectively. 1. The knee flexion/extension and ankle flexion/extension coupling pattern of both foreward and backward running over the stride was converged on a complete coordination. However, the ankle flexion/extension to knee flexion/extension was relatively greater at heel-strike in backward running compared with forward running. At the swing deceleration, backward running was dominantly led by the ankle flexion/extension, but forward running done by the knee flexion/extension. 2. The knee flexion/extension and ankle inversion/eversion coupling pattern for both running was also converged on a complete coordination. At the mid-stance. the ankle movement in the frontal plane was large during forward running, but the knee movement in the sagital plane was large during backward running and vice versa at the swing deceleration. 3. The knee flexion/extension and tibia internal/external rotation coupling while forward and backward run was also centered on the angle of 45 degrees, which indicate a complete coordination. However, tibia internal/external rotation dominated the knee flexion/extension at heel strike phase in forward running and vice versa in backward running. It was diametrically opposed to the swing deceleration for each running. 4. Both running was governed by the ankle movement in the frontal plane across the stride cycle within the knee internal/external rotation and tibia internal/external rotation. The knee internal/external rotation of backward running was greater than that of forward running at the swing deceleration. 5. The tibia internal/external rotation in coupling between the tibia internal/external rotation and foot inversion/eversion was relatively great compared with the foot inversion/eversion over a stride for both running. At heel strike, the tibia internal/external rotation of backward running was shown greater than that of forward(p<.05). 6. The thigh internal/external rotation took the lead for both running in the thigh internal/external rotation and tibia internal/external rotation coupling. In comparison of phase, the thigh internal/external rotation movement at the swing acceleration phase in backward running worked greater in comparison with forward running(p<.05). However, it was greater at the swing deceleration in forward running(p<.05). 7. With the exception of the swing deceleration phase in forward running, the tibia flexion/extension surpassed the thigh flexion/extension across the stride cycle in both running. Analysis of the specific stride phases revealed the forward running had greater tibia flexion/extension movement at the heel strike than backward running(p<.05). In addition, the thigh flexion/extension and tibia flexion/extension coupling displayed almost coordination at the heel strike phase in backward running. On the other hand the thigh flexion/extension of forward running at the swing deceleration phase was greater than the tibia flexion/extension, but it was opposite from backward running. In summary, coupling which were the knee flexion/extension and ankle flexion/extension, the knee flexion/extension and ankle inversion/eversion, the knee internal/external rotation and ankle inversion/eversion, the tibia internal/external rotation and foot inversion/eversion, the thigh internal/external rotation and tibia internal/external rotation, and the thigh flexion/extension and tibia flexion/extension patterns were most similar across the strike cycle in both running, but it showed that coupling patterns in the specific stride phases were different from average point of view between two running types.

Control Algorithm of a Wearable Walking Robot for a Patient with Hemiplegia (편마비 환자를 위한 착용형 보행 로봇 제어 알고리즘 개발)

  • Cho, Changhyun
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.323-329
    • /
    • 2020
  • This paper presents a control algorithm for a wearable walking aid robot for subjects with paraplegia after stroke. After a stroke, a slow, asymmetrical and unstable gait pattern is observed in a number of patients. In many cases, one leg can move in a relatively normal pattern, while the other leg is dysfunctional due to paralysis. We have adopted the so-called assist-as-needed control that encourages the patient to walk as much as possible while the robot assists as necessary to create the gait motion of the paralyzed leg. A virtual wall was implemented for the assist-as-needed control. A position based admittance controller was applied in the swing phase to follow human intentions for both the normal and paralyzed legs. A position controller was applied in the stance phase for both legs. A power controller was applied to obtain stable performance in that the output power of the system was delimited during the sample interval. In order to verify the proposed control algorithm, we performed a simulation with 1-DOF leg models. The preliminary results have shown that the control algorithm can follow human intentions during the swing phase by providing as much assistance as needed. In addition, the virtual wall effectively guided the paralyzed leg with stable force display.

Influence of Different Slope Analysis during Pitching Wedge Swing on Plantar Pressure Distribution Pattern (경사면에서 골프스윙 동작시 족저압력 분석)

  • Son, Dong-Ju;Yang, Jeong-Ok;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.297-309
    • /
    • 2009
  • The study analyzed the mechanism of plantar foot pressure distribution during pitching wedge swinging on a flat, an up hill lie and a down hill lie to provide the fundamental information regarding biomechanical motion data by using plantar foot pressure measuring instrument. In the results, time factor spanning according to slope differences, plantar foot pressure factor and swing motion on the slope could have negative effect on the coiling of lower limbs during back swing, as well as the blocking of the lower limbs to minimize the dispersion of the weight and the release of the lower limbs after the impact during the down swing process. Moreover, since slope is one of many external factors affecting swing motion, address motion on an up hill lie limits the lower limbs movement, therefore, a relatively narrow stance is better on a down hill lie. It is estimated that a relatively wide stance would be better in order to limit the bigger activation of the lower limbs. Not only for the address motion but also during the down swing on an up hill lie it is concluded that the weight should be on the left foot in order to keep the body balance.

Design of 1-DOF Walking Orthosis for Paralysis Patients (하지 마비 환자를 위한 1 자유도 보행 보조기 설계)

  • 정철희;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1137-1142
    • /
    • 2004
  • Walking training is one of the most important rehabilitation processes with paralysis patient. Walking training by using an orthosis can help advancing a patient's independent level. However, existing orthoses have some serious demerit of mechanical problem that the knee joint is locked in the state where it is completely extended, which increases energy consumption and fatigue. For this reason, it is suggested, for more practical orthosis, that the knee joint should be placed and it should have capability of suspending patient's weight. In this paper, 1-DOF walking orthosis which compensates the demerit of the existing orthosis and secures patient's mobility has been proposed. New orthosis has been designed under the following two premises. First, the knee joint of the orthosis was designed fold in order for the orthosis to move in a walking pattern similar to that of a normal person. Second, the knee joint was designed to extend during the swing phase and lock safely during the stance phase.

  • PDF

Gait Pattern Classification using EMG Signal (근전도 신호를 이용한 보행 패턴 분류)

  • 지연주;송신우;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.115-115
    • /
    • 2000
  • A gait pattern classification method using electromyography(EMG) signal is presented. The gait pattern with four stages such as stance, heel-off, swing and heel-strike is analyzed and classified using feature parameters such as zero-crossing, integral absolute value and variance of the EMG signal. The EMG signal from Tibialis Anterior and Gastrocnemius muscles was obtained using the surface electrodes, and low-pass filtered at 10kHz. The filtered analog signal was sampled at every 0.5msec and converted to digital signal with 12-bit resolution. The obtained data is analyzed and classified in terms of feature parameters. Analysis results are given to show that the gait patterns classified by the proposed method are feasible.

  • PDF

A Study on the Undo Function Implementation using the Design Patterns (디자인 패턴을 이용한 Undo 기능 설계에 대한 연구)

  • Kim, Tai Suk;Kim, Jong Soo
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1544-1552
    • /
    • 2016
  • If the undo/redo function is not reflected in the initial design of an application, it makes it difficult to implement the undo/redo function additionally, in this paper, we examined some examples to design the sodoku game and analyzed problems of the design to implement the undo/redo functions. For an efficient design of the undo/redo functions without using swing.undo package, we propose a class design using the Command, Memento, and Observer pattern these are used as organic. The proposed method is more efficient for distributed work than other method. We implemented a sudoku game using proposed design. In the undo/redo function testing, we could see that it works well.

A Study on Weight Transfer Sidehill Slopes during Goal Impact : Especially sidehill Slopes with ball above the feet (측면경사면에서의 목표 타격시 체중이동에 관한 연구 : 오르막경사를 중심으로)

  • Lee, Eui-Lin;Choi, Ji-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.43-53
    • /
    • 2006
  • Among several movements that occurred upon a slope, golf swing is the most typical one because environmental conditions dynamically vary with many kinds of slopes. Some studies on the golf swing were performed about a weight transfer on flatland, however, there couldn't be seen any study about the weight transfer on slope elsewhere. Therefore, the purpose of this study was to provide quantified data to objectively test the coaching words and keys about the weight transfer at sidehill slope during goal impact EspeciaIly sidehill Slopes with ball above the feet. Four highschool golfer, who have average handy 5, were recruited for this study. Plantar pressure distribution and cinematographic data were collected during golf swing in the conditions of flatland, $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$sidehill slope simultaneously. The two data were used to synchronize the two data later. The plantar regions under the foot were divided into 8 regions according to the directly applied pressure pattern of the subject to insole sensor. The 8 foot regions were hullux, medial forefoot, central forefoot, lateral forefoot, medial midfoot, lateral midfoot, medial heel, and lateral heel. And the plantar pressure data was also divided into four movement address, phases-backswing. downswing, and follow-through phases according to the percentage shown to the visual information of film data. Based on the investigations on public golf books and experiences of golfers, it was hypothesized by the authors in the early of this study that the steeper slopes are, the more weight loads on left foot that positions at the higher place. When observing the results of plantar pressure and vertical force curves according to the sidehill slope conditions, the hypothesis could be accepted.

A Study of Lower Extremities Joint Moment Pattern by Stance Types in Tennis Serve (테니스 서브 스탠스 유형별 하지관절 모멘트의 패턴 연구)

  • Kim, Sung-Sup;Kim, Eui-Hwan;Kim, Euy-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.41-48
    • /
    • 2008
  • The purpose of this study was to analyze the lower extremities joint moment pattern by two types of service motion in tennis pinpoint and platform stance. Seven skilled high school tennis players participated, and the kinematics were recorded by the Vicon motion analysis system. For the gathering and analysis of the data Workstation, Bodybuilder and polygon were used. joint moments and Ground Reaction Forces for the phases involved were analyzed with the following results. There was a different moment pattern for the lower extremities between the two serve motions. For the platform stance there was only a large dorsal flexion moment but for the pinpoint stance there were other large moments. The flexion and maximum moment of the lower extremities occurred at the point of change from back swing and to the forward swing motion. Therefore, this data provides evidence that there is a high risk of injury at this point.

Gait Phases Detection from EMG and FSR Signals in Walkingamong Children (근전도와 저항 센서를 이용한 보행 단계 감지)

  • Jang, Eun-Hye;Chi, Su-Young;Lee, Jae-Yeon;Cho, Young-Jo;Chun, Byung-Tae
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.207-214
    • /
    • 2010
  • The aim of this study was to investigate upper and lower limb muscle activity using EMG(electromyogram) sensors while walking and identify normal gait pattern using FSR(force sensing resistor) sensor. Fifteen college students participated in this study and their EMG and FSR signal were measured during stopping and walking trials. EMG signals from upper(pectoralis major and trapezius) and lower limbs(rectus femoris, biceps femoris, vastus medialis, vastus lateralis, semimembranosus, semitendinosus, soleus, peroneus longus, gastrocnemius medialis, and gastrocnemius lateralis) were obtained using the surface electrodes. FSR measured pressures on 8 areas of the sole of the foot during walking. EMG results showed that all muscle activities except for vastus lateralis and semimembranosus during walking had higher amplitudes than stopping. Additionally, muscle activities associated with stance and swing phase during walking were identified. Results on FSR showed that stance and swing phases were detected by FSR signals during a gait cycle. Eight gait phases-initial contact, loading response, mid stance, terminal stance, pre swing, initial swing, mid swing, and terminal swing- were classified.

  • PDF

Anti-sway Control of Crane System using Hybrid Control Method (하이브리드 방식을 이용한 크레인의 안티스웨이 제어)

  • 박흥수;박준형;이동훈;김상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.559-562
    • /
    • 1995
  • In the crane control system, it is reguired that the travelling time of the crane must be reduced as much as possible and the swing must be stoped at the end point. In paper, we present a hybrid control method which include the optimal regulator and velocity pattern controller in order to make high performance of the anti-sway. To implement the control algorithm, the dynamic equation is linearlized at an equilibrium point, so that the liner time invariant state equation can be obtained. In order to experiment the crane control, we consider 1 over 10 of the gantry crane which is used in a port. As a result, the hybrid control method improve efficient anti-sway control more than conventional velocity pattern control. It is expected that the proposed system will make an important contribution to the industrial fields.

  • PDF