• 제목/요약/키워드: sweetpotato root

검색결과 50건 처리시간 0.028초

Expression Analysis of Sweetpotato Sporamin Genes in Response to Infection with the Root-Knot Nematode Meloidogyne incognita

  • Jung-Wook Yang;Yun-Hee Kim
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.163-168
    • /
    • 2023
  • Sweetpotato (Ipomoea batatas [L.]) is a globally important root crop cultivated for food and industrial processes. The crop is susceptible to the root-knot nematode (RKN) Meloidogyne incognita, a major plant-parasitic RKN that reduces the yield and quality of sweetpotato. Previous transcriptomic and proteomic analyses identified several genes that displayed differential expression patterns in susceptible and resistant cultivars in response to M. incognita infection. Among these, several sporamin genes were identified for RKN resilience. Sporamin is a storage protein primarily found in sweetpotato and morning glory (Ipomoea nil). In this study, transcriptional analysis was employed to investigate the role of sporamin genes in the defense response of sweetpotato against RKN infection in three susceptible and three resistant cultivars. Twenty-three sporamin genes were identified in sweetpotato and classified as group A or group B sporamin genes based on comparisons with characterized sweetpotato and Japanese morning glory sporamins. Two group A sporamin genes showed significantly elevated levels of expression in resistant but not in susceptible cultivars. These results suggest that the elevated expression of specific sporamin genes may play a crucial role in protecting sweetpotato roots from RKN infection.

Screening of Selected Korean Sweetpotato (Ipomoea batatas) Varieties for Fusarium Storage Root Rot (Fusarium solani) Resistance

  • Lee, Seung-yong;Paul, Narayan Chandra;Park, Won;Yu, Gyeong-Dan;Park, Jin-Cheon;Chung, Mi-Nam;Nam, Sang-Sik;Han, Seon-Kyeong;Lee, Hyeong-Un;Goh, San;Lee, Im Been;Yang, Jung-Wook
    • 한국균학회지
    • /
    • 제47권4호
    • /
    • pp.407-416
    • /
    • 2019
  • A common post-harvest disease of sweetpotato tuber is root rot caused by Fusarium solani in Korea as well as the other countries. Storage root rot disease was monitored earlier on sweetpotato (Ipomoea batatas) in storehouses of different locations in Korea. In the present study, an isolate SPL16124 was choosen and collected from Sweetpotato Research Lab., Bioenergy Crop Research Institute, NICS, Muan, Korea, and confirmed the identification as Fusarium solani by conidial and molecular phylogenetic analysis (internal transcribed spacer ITS and translation elongation factor EF 1-α gene sequences). The isolate was cultured on potato dextrose agar, and conidiation was induced. The fungus was screened for Fusarium root rot on tuber of 14 different varieties. Among the tested variety, Yenjami, Singeonmi, Daeyumi, and Sinjami showed resistant to root rot disease. Additionally, the pathogen was tested for pathogenicity on stalks of these varieties. No symptom was observed on the stalk, and it was confirmed that the disease is tissue specific.

Effect of Different Irrigation Levels on the Fiber Content of Sweetpotato Root

  • Won Park;Hyeong-Un Lee;Tae Hwa Kim;Kyo Hwui Lee;Sang Sik Nam;Mi Nam Chung
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.49-49
    • /
    • 2022
  • One of the major problems with sweetpotato (Ipomoea batats Lam.) is the tough thread tissue that occurs in the storage root, which has a negative impact on the sales of sweet potato because it impairs the texture during cooking and the processing quality. The fiber contents in storage roots of sweetpotato is affected by cultivation conditions and environment. To investigate the effect of fiber generation at different levels of irrigation, the sweetpoatoto "Hogammi" was transplanted in greenhouse. Sweetpotato was grown in styrofoam beds(W1605*D330*H300mm) to block moisture flowing from the outside. The irrigation was carried out as 3 levels (5,10, and 20 mm through drip irrigation facilities) at 20-day intervals. Five plants were harvested per plot at 90, 100 and 120 days after transplanting (DAT). The size of the storage root was large in the order of irrigation conditions 10mm>20mm>5mm treatment. And the longer cultivation period, the larger size of the storage root was observed. As a result of the analysis of the fiber content, it showed a tendency to decrease as the cultivation period increased (90days→120days). In addition, the fiber contents of sweetpotato harvested at 90, 100 and 120 DAT in the level of 5 mm irrigation plot were 351, 324 and 207 mg/100g, respectively, which were higher than those of other irrigation level plots. During all cultivation periods, the 10mm treatment group showed the lowest fiber content of 280, 228 and 127 mg/100g. At 20 mm irrigation level, the fiber content was less than that of 5mm irrigation level, but showed a tendency to increase compared to that of 10 mm irrigation level. These results suggested that drought stress or excessive-irrigation increases the fiber content of sweetpotato, which reduces their commercial value.

  • PDF

산업용 고구마 개발을 위한 유전자원 현황 및 전망 (Genetic resources of sweetpotato for industrial use)

  • 목일진;자오동란;곽상수
    • Journal of Plant Biotechnology
    • /
    • 제36권3호
    • /
    • pp.202-206
    • /
    • 2009
  • In many countries including China and U.S., researchers are developing methods to use sweetpotato as raw material for biofuel. We consider the sweetpotato is not only a source of green fuel, it eventually will provide various material including paper, adhesives, biodegradable plastics, and secondary metabolites. Sweetpotato is one of the high efficiency crop because it yields more calories per unit area than either maize or potato, and it requires the shortest growing cycle of the root crops grown in the tropics. Sweetpotato is the most useful crop for the coming starchbased industry era. Sweetpotato genetic resources are collected, characterized, evaluated, and maintained by U.S., China, Japan, and the International Potato Center. New varieties of sweetpotato using the proper genetic resources and molecular breeding will be developed to cope with the global food and energy in 21st century.

고구마 연작지에서 심토파쇄에 따른 고구마 생육 및 수량성 변화 (Effect of Subsoiling on Growth and Yield of Sweetpotato in Continuous Sweetpotato Cropping Field)

  • 이형운;정미남;한선경;안승현;이준설;양정욱;송연상;김재명;남상식;최인후
    • 한국작물학회지
    • /
    • 제60권1호
    • /
    • pp.47-53
    • /
    • 2015
  • 고구마 연작 토양에서 토양물리성을 개선하고 고구마의 괴근 수량을 증가시키기 위한 심토파쇄의 효과를 살펴본 결과는 다음과 같다. 1. 용적밀도와 공극률, 고상의 비율은 표토와 심토에서 2년간 심토파쇄+로터리 혹은 1년차 심토파쇄+로터리 토양에서 개선되어 심토파쇄에 의해 토양물리성이 개선되는 것으로 나타났다. 2. 심토파쇄의 깊이가 깊어질수록 유기물, 유효인산, 총 질소 등 토양 양분은 감소하는 경향이었다. 3. 지상부 수량과 주경의 길이는 2년간 심토파쇄+로터리 토양에서 많거나 길었으며, 1년차 심토파쇄+로터리 토양, 관행 로터리 토양 순으로 줄어들었으나 유의적인 차이는 없었다. 4. 심토파쇄+로터리 토양에서 관행 로터리 토양보다 상품괴근수량이 17~20% 정도 유의하게 많았으며 주당 상저수, 주당 상저중도 증가하여 고구마 연작지에서 심토파쇄에 의한 증수 효과가 있는 것으로 나타났다. 5. 고구마 괴근의 브릭스 당도와 총유리당 함량은 심토파쇄에 따른 유의한 차이는 없었다.

재배지역에 따른 고구마의 생육 및 괴근 특성 차이 (Difference of Growth and Root Characteristics of Sweetpotato by Cultivated Region)

  • 한선경;송연상;안승현;이형운;이준설;정미남;박광근
    • 한국작물학회지
    • /
    • 제57권3호
    • /
    • pp.262-270
    • /
    • 2012
  • 재배지역에 따라서 동일한 고구마 품종이 나타내는 생육특성과 괴근특성을 구명하고 보다 우수한 품질의 고구마를 생산하기 위한 기초자료를 얻고자 수행된 결과는 다음과 같다. 1. 지역별 재배 토양의 토성은 논산시험구가 식양토, 함양이 양토였으며, 무안, 익산, 보령은 사질양토였다. 또한 보령시험구는 강우량이 많아 일조시간이 짧았으며 적산온도는 익산시험구가 높게 나타났다. 2. 전기전도도는 무안시험구가 다른 지역 시험구에 비해 높았고, 유기물 함량 및 유효인산, 양이온치환용량은 보령이 높아 토양 비옥도가 높게 나타났다. 3. 덩굴무게는 보령시험구에서 많았으며 수량과 당도는 무안과 익산에서 높았다. 4. 고구마의 형태는 익산시험구는 단방추형이었고, 함양은 장방추형으로 길쭉한 경향이었으며, 육색은 익산과 무안시험구의 색도가 낮아 어두운 색을 보였다. 5. 전분가 및 당도는 무안과 익산시험구가 높았고 함양은 낮은 경향이었다.

Characteristics of Growth and Yield by Varieties of Sweetpotato(Ipomoea Batatas L.) Cultivated in Paddy Field

  • Won Park;Sang Sik Nam;Hyeong-Un Lee;Tae Hwa Kim;Sujung Kim;Mi Nam Chung
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.48-48
    • /
    • 2022
  • In recent, a demand for sweetpotato cultivation technology to expand the cultivated area of field crops in paddy fields is increasing. This research was carried out to establish suitable varieties and cultivation techniques for mass production of sweetpotato for processing raw materials. For the selection of varieties suitable for cultivation in rice fields for each processing purpose, 12 varieties in 2018 (8 varieties for starch, 4 as dried, chips and beverages), and 6 varieties in 2019 (4 varieties for starch including 'Daeyumi'; chips, semi-dried 'Pungwonmi'; beverage and coloring 'Shinjami') were used. Sweetpotato stems were planted in mid-May and harvested after 120 days to investigate the yield. Results revealed that the yield of sweetpotato (2019) for starch production, varied with variety as 'Gogeonmi' 3,926 > 'Jinhongmi' 3,428 > 'Daeyumi' 2,873 > 'Singeonmi' 2,752 kg/10a. The starch content was 20.2% in 'Daeyumi', 18.2 in 'Gogeonmi', 21.2 in 'Singeonmi', and 20.6% in 'Jinghongmi'. The total amount of starch was higher in 'Daeyumi' (730 kg/10a) and 'Gogeonmi' (731 kg/lOa). The yield of chips and edible varieties 'Pungwonmi' was 4,688 kg/10a. The yield of 'Shinjami' of purple variety such as beverages and powder was 3,139 kg/10a. Aaa result of evaluation sweetpotato yield by waterlogging treatments on different growing stages in paddy fields, the yields of 'Daeyumi' and 'Jinhongmi' varieties treated with waterlogging at the storage root formation stage decreased by 11.8% and 11.7%, respectively, compared to the control. In the case of waterlogging treatment at storage root swelling stage, Both varieties showed the lowest yield reduction at 7.0% and 4.8%, respectively. Based on these results, stable production and substitution effect of processing raw materials can be expected by cultivating sweetpotato varieties suitable for paddy cultivation.

  • PDF

고구마 품질평가 현황과 전망 (Current Status and Prospect of Quality Evaluation in Sweetpotato)

  • 정병춘;안영섭;정미남;이준설;오양호
    • 한국작물학회지
    • /
    • 제47권
    • /
    • pp.124-134
    • /
    • 2002
  • The sweetpotato, Ipomoea batatas L. (Lam.), is one of the important summer upland crops in Korea and has been used as human food, industrial yaw material and vegetable. Sweetpotato has been consumed for human foods such as boiled, roasted, fried or salad etc. It should be developed for higher quality as a snack or health food, primarily through improving the eating and marketing qualities as well as nutritional value. Its quality after cooking or processing is a complex one combining the aroma, taste, texture and fiber content. The other important qualities for consumers are root shape, size, skin color, flesh color, insect and disease resistance, nutritional components and safety from phytoalexins(toxic stress metabolites) etc. Korean people generally prefer to red skin color, round or elliptic shape and dry texture, yellow flesh color of sweetpotato which is high in starch content including vitamins and nutrients. The almost factors of quality components of sweetpotato are genetically controlled by breeder, but postharvest handlings and marketing management for making high quality goods should be done thoroughly according to the quality evaluation criteria of sweetpotato from the moment of harvest until shipping them to the market by farmers and the other users. This paper describes current status and prospects of the quality evaluations and researches in sweetpotato roots in Korea.

Growth retardation and differential regulation of expansin genes in chilling-stressed sweetpotato

  • Noh, Seol Ah;Park, Sun Hee;Huh, Gyung Hye;Paek, Kyung-Hee;Shin, Jeong Sheop;Bae, Jung Myung
    • Plant Biotechnology Reports
    • /
    • 제3권1호
    • /
    • pp.75-85
    • /
    • 2009
  • We report here a first evaluation of chilling-responsive gene regulation in the sweetpotato. The growth of sweetpotato plants was severely retarded at $12^{\circ}C$; the lengths of the leaf, petiole, and root were markedly reduced and microscopic observation revealed that the elongation growth of the epidermal cells in each of these organs was significantly reduced. We examined the transcriptional regulation of three sweetpotato expansin genes (IbEXP1, IbEXP2 and IbEXPL1) in response to various chilling temperatures (12, 16, 22, and $28^{\circ}C$). In the leaf and petiole, the highest transcript levels were those of IbEXP1 at $28^{\circ}C$, whereas IbEXPL1 transcript levels were highest in the root. IbEXP1 mRNA levels in the $12^{\circ}C-treated$ petiole showed a fluctuating pattern (transient decrease-recovery-stable decrease) for 48 h. In the leaf and petiole, IbEXP1 and IbEXPL1 exhibited a similar response to chilling in that their mRNA levels decreased at $22^{\circ}C$, increased at $16^{\circ}C$, and decreased dramatically at $12^{\circ}C$. In contrast, mRNA levels of IbEXP2 in the leaf fell gradually as the temperature fell from 28 to $12^{\circ}C$, while they remained unaltered in the petiole. In the root, mRNA levels of IbEXPL1 and IbEXP1 reached maximum levels at $16^{\circ}C$, and decreased significantly at $12^{\circ}C$. These data demonstrated that expression of these three expansin genes was ultimately down-regulated at $12^{\circ}C$; however, transcriptional regulation of each expansin gene exhibited its own distinctive pattern in response to various chilling temperatures.

Evaluation of Fiber Content According to the Cultivation Period of New Sweetpotato Varieties

  • Won Park;Mi Nam Chung;Koan Sik Woo;Hyeong-Un Lee;Tae Hwa Kim;Su Jung Kim;Kyo Hwui Lee;Sang Sik Nam
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.54-54
    • /
    • 2022
  • Recently, as one of the major problems in the quality of sweetpotato, occurrence of thin and long fibrous tissues in storage root acts as a negative factor when consumers eat sweetpotato. In this study, the fiber content was compared according to the cultivation period in storage roots of 'Sodammi' and 'Hopungmi', which were newly bred and developed, and in that of 'Hogammi', which contains a lot of fibrous tissues. To isolate of fiber from storage root, the Association Official Analytical Chemists (AOAC) method was applied for quantifying fiber present in storage root of sweetpotato. The fiber contents isolated by this method is calculated by converting the weight of the storage root. The fiber content was measured every 20 days from 60 to 120 days after planting. As a result of this study, the lowest amount of fiber was 'Hopungmi' (70~140 mg/100 g), and the highest amount of fiber was observed in 'Hogammi' (115~223 mg/100 g). 'Sodammi' showed an intermediate level (104~149 mg/100 g) between the fiber content of 'Hopungmi' and 'Hogammi'. The fiber contents of 'Hopungmi' was 39% lower than that of 'Hogammi'. As the increased cultivation periods, the fiber contents showed a tendency to decrease. In the future research, the length, thickness, and fiber contents will be investigated to compare the degree of taste inhibition.

  • PDF