• Title/Summary/Keyword: sweet persimmon wine

Search Result 4, Processing Time 0.025 seconds

A Study on the Making of Sweet Persimmon (Diospyros kaki, T) Wine (단감(Diospyros kaki, T) 와인 제조에 관한 연구)

  • Cho, Kye-Man;Lee, Jung-Bock;Kahng, Goon-Gjung;Seo, Weon-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.785-792
    • /
    • 2006
  • The characteristics of alcohol fermentation using sweet persimmon juice were studied in static fermentation in an effort to develop new types of functional wine. The yeast strain Saccharomyces cerevisiae KCCM 12650 was selected for use in the fermentation of sweet persimmon juice. Attempts were made to modify the sweet persimmon juice in order to find suitable conditions for alcohol fermentation. The modified sweet persimmon juice (pH 4.0) that was most suitable for alcohol fermentation contained $24^{\circ}Brix$ of sugar supplemented with sucrose as a carbon source and 0.5 g/L of $(NH_4)_2HPO_4$ as a nitrogen source. After 5 days of fermentation at $25^{\circ}C$, 12.8% of alcohol was produced from the modified juice and its pH was slightly decreased to 3.9. Browning of the wine was observed during storage due to the oxidation of phenolic compounds. The initial browning of 0.08% at $OD_{420}$ after fermentation increased to 0.40 during storage for 11 weeks at room temperature. The addition of $K_2S_2O_5$ was effective in delaying the browning of the wine. The browning of the wine decreased to 0.25 at $OD_{420}$ with the addition of 200 mg/L of $K_2S_2O_5$. The wine produced in this study contained some organic acids such as malic acid (6.82% g/L) and succinic acid (1.40 g/L), some minerals such as $K^+$ (947.8 mg/L) and $Mg^{2+}$ (36.4 mg/L), as well as soluble phenolics (779 mg/L of gallic acid equivalent). Schisandra fruit was added to the sweet persimmon juice during alcohol fermentation in order to improve the sour taste and flavor. The best sensory quality (taste, flavor, and color) was obtained by adding 0.5% schisandra fruit.

Antioxidant Activity and Neuroprotective Effect of Concentrates from Commercial Sweet Persimmon Wine (시판 단감 와인농축물의 항산화 활성 및 신경세포 보호효과)

  • Seo, Hye-Kyung;Jang, Sun-Young;Kim, Hyun-Jung;Park, Hae-Ryong;Park, Joong-Hyeop;Ahn, Gwang-Hwan;Lee, Seung-Cheol
    • Korean journal of food and cookery science
    • /
    • v.26 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • The antioxidant activity of commercial sweet persimmon wine concentrate (SPWC) was evaluated by determining the total phenol content (TPC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, reducing power (RP), and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities. TPC in the SPWC was $9.29{\pm}0.11\;mg$ gallic acid equivalents (GAE)/g, which corresponds to 31.59 mg GAE/100 mL of the wine. The IC50 for the DPPH radical scavenging activity, RP, and ABTS radical scavenging activity of SPWC were 2.96, 1.44, and 0.48 mg/mL, respectively. The neuroprotective effect of SPWC against glutamate-induced neurotoxicity in N18-RE-105 cells was investigated. Treatment of N18-RE-105 cells with various SPWC concentrations under glutamate resulted in the induction of a protective effect in a dose-dependent manner, as determined by the MTT reduction assay. These results suggest that SPWC exhibits considerable antioxidant and neuroprotective activity.

Preparation and Characterization of Sweet Persimmon Wine (단감을 이용한 발효 와인의 제조 및 특성)

  • Bae, Sung-Mun;Park, Kang-Ju;Kim, Jeong-Mok;Shin, Dong-Joo;Hwang, Yong-Il;Lee, Seung-Cheol
    • Applied Biological Chemistry
    • /
    • v.45 no.2
    • /
    • pp.66-70
    • /
    • 2002
  • In this study, three kinds of Saccharomyces cerevisiae strains (KCTC 7106, 7238, 7904) were tested with respect to the ability of alcohol fermentation at $20^{\circ}C$ for 3 weeks, and S. cerevisiae KCTC 7106 was the most effective strain in alcohol fermentation with sweet persimmon. To increase the utility of sweet persimmon, the fruits stored for 1 year were used to make an alcohol beverage. It was adjusted 25% of total sugar content and allowed alcohol fermentation with shaking at 120 rpm and $30^{\circ}C$. The alcohol content of 11.6% showed at 15 days and it did not change until 25 days. The initial pH of the fermentation was near 5 then decreased to 4 within 5 days and the initial vitamin C content, 5.04 ${\mu}g/ml$, gradually decreased with fermentation periods. In the other study, the alcohol fermentation from fresh harvested persimmons showed 13% alcohol content at $20^{\circ}C$ for 30 days without agitation, while the alcohol content of the fermentation at $30^{\circ}C$ was 11.8% at 25 days and 13.4% at 35 days.

Effect of Sweet Persimmon Wine on Alcoholic Fatty Livers in Rats (흰쥐에서 단감발효주가 알코올성 지방간 형성에 미치는 영향)

  • Nam, Kyung-Sook;Kim, Ju-Youn;Noh, Sang-K.;Park, Joong-Hyeop;Sung, Eon-Gi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1548-1555
    • /
    • 2011
  • Persimmons are shown to contain high levels of phenolics. The present study was designed to investigate if a sweet persimmon wine (SPW) would affect the development of alcoholic fatty liver in rats. Initially, male Sprague-Dawley rats were housed singly in stainless steel wire-bottomed cages in a room of controlled temperature and lighting. The rats had free access to a nutritionally adequate AIN-93G diet and deionized water. After the acclimatization period, rats were weight-matched and assigned to the following three groups: two groups were fed 6.7% ethanol or the caloric equivalent of maltose-dextrin in a Lieber-DeCarli diet and the other group was fed the isocaloric Lieber-DeCarli diet containing SPW at the same ethanol level. All three groups were fed their respective diets for 6 weeks. Serum transaminase, cholesterol, and triglyceride levels were measured. Liver lipids and histology were assessed at 6 weeks. The total phenolic content and the antioxidant and free radical scavenging activities of SPW were determined. SPW significantly increased antioxidant and free radical scavenging activities. As markers of liver injury, serum alanine and aspartate transminases were markedly lowered by SPW at 6 weeks. SPW significantly reduced the serum levels of serum cholesterol and triglyceride compared to ethanol treatment. SPW delayed the development of an alcoholic fatty liver by reversing fat accumulation in the liver, as evidenced in histological observations. Taken together, SPW seems to protect the liver from becoming fatty by alleviating fatty liver symptoms and lowering hepatic and serum lipid levels. Such a protective effect of SPW appears to be in part due to its phenolics.