• Title/Summary/Keyword: sweet corn

Search Result 175, Processing Time 0.027 seconds

Optimum Harvest Time for High Quality Seed Production of Sweet and Super Sweet Corn Hybrids

  • Lee Suk Soon;Yun Sang Hee;Seo Jung Moon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.373-380
    • /
    • 2004
  • The production of sweet (su) and super sweet corns (sh2) has been economically feasible in Korea in recent years. Major factors limiting super sweet corn production are low germination and low seedling vigor. Since seed quality is closely related to seed maturity, the optimum harvest time for the seed production of sweet and super sweet corns was studied and the quality of seeds with varying maturities was investigated in 2001 and 2002 cropping seasons. The parents of the sweet corn seeds were Hybrid Early Sunglow and 'Golden Cross Bantam 70' and those of super sweet corn were Xtrasweet 82 and 'For­tune'. Seeds were harvested at 21, 28, 35, 42, 49, and 56 days after silking (DAS). As the seeds developed, seed weight of sweet corn increased and the seed moisture content decreased faster than that of super sweet corn. Germination rates of sweet corn seeds harvested 21 and 28 DAS at $25^{\circ}C$ and emergence rates in the cold soil test were significantly lower than those of seeds harvested after 42 DAS in both years. Although the germination rates of super sweet corn seeds with varying maturities showed similar patterns as sweet corn seeds at $25^{\circ}C$, the emergence rate of super sweet corn seeds in cold soil test continuously increased with seed maturity. This suggests that seed quality of super sweet corn should be tested in a cold soil test to estimate field emergence. As the seeds developed, leakage of total sugars and electrolytes from the both sweet and super sweet corn seeds decreased up to 42 or 49 DAS. The $\alpha-amylase$ activities of both sweet and super sweet corn seeds increased with seed maturity from 21 to 35 or 49 DAS depending on genotype and year. The optimum harvest time for the seed production of sweet corn was 42 DAS and 49 DAS for super sweet corn considering emergence rate and plumule dry weight in the cold soil test, leakage of sugars and electrolytes from the seeds, and $\alpha-amylase$ activity.

Effect of Seed Priming on Quality Improvement of Maize Seeds in Different Genotypes

  • Seo Jung Moon;Lee Suk Soon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.381-388
    • /
    • 2004
  • In Korea, production of super sweet corn has been economically feasible and is substituting for traditional sweet corn due to better flavor in recent years. Major limiting factors for super sweet corn production are low field emergence and low seedling vigor. The optimum water potential (WP) for the priming of normal and aged seeds of dent, sweet (su) and super sweet (sh2) corns was studied to improve low seed quality. Seeds were primed at 0, -0.3, -0.6, -0.9, and -1.2 MPa of polyethylene glycol (PEG) 8000 solution at $15^{\circ}C$ for 2 days. Priming effects differed depending on the type of corn, seed quality, and WP of PEG solution. Although WP of priming solution did not influence the emergence rate of extremely high quality normal dent corn seeds, it reduced time to $50\%$ emergence (T50) and increased plumule weight. In contrast, the emergence rate of aged field corn was improved by seed priming at 0 MPa and plumule weight and $\alpha-amylase$ activity was enhanced. The optimum WP for both normal and aged sweet and super sweet corn seeds was between -0.3 and -0.6 Mpa. At the optimum WP emergence rate, $\alpha-amylase$ activity, and content of DNA and soluble protein increased, while T50 and leakage of total sugars and electrolytes reduced.

Sugars, Soluble Solids, and Flavor of Sweet, Super Sweet, and Waxy Corns during Grain Filling

  • Lee, Suk-Soon;Yun, Sang-Hee;Kim, Jae-Hyeun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.267-272
    • /
    • 1999
  • In order to determine the optimum harvest time of vegetable corns, the changes in sugars, soluble solids, and flavor of kernels of sweet (cv. ‘Golden Cross Bantam 70’), super sweet (cv. ‘Cocktail E-51’), and waxy corns (cv. ‘Chalok 2’) were observed at different ripening stages. Sucrose was a major sugar in the sweet and super sweet corns and the content increased from 15 to 21 and 27 days after silking (DAS), respectively and then decreased. Glucose and fructose contents of sweet and super sweet corns tended to decrease with kernel maturity. Total sugar content of the sweet corn analyzed by the anthrone method increased rapidly from 15 to 21 DAS, while that of the super sweet and the waxy corns increased slowly up to 24 and 26 DAS, respectively and decreased thereafter. The content of soluble solids in sweet corn was much higher than that of super sweet corn. Starch content of the sweet corn increased slowly from 15 to 33 DAS, while that of the super sweet corn increased a little rapidly from 15 to 21 DAS and then leveled off to 33 DAS. Starch content of the waxy corn increased continuously from 21 to 38 DAS. There was a positive correlation between the sum of individual sugars (sucrose, glucose, and fructose) and soluble solids in both sweet and super sweet corns, while the content of soluble solids was not related to the sum of individual sugars or total sugars. The flavor rate of sweet and super sweet corns maintained high between 21 and 27 DAS and that of waxy corn decreased from 24 to 33 DAS. The optimum harvest time for sweet, super sweet, and waxy corns was thought to be 21 to 24 DAS considering sugar and starch contents, flavor, and marketing.

  • PDF

Genotypes of commercial sweet corn F1 hybrids

  • Kang, Minjeong;Wang, Seunghyun;Chung, Jong-Wook;So, Yoon-Sup
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.107-107
    • /
    • 2017
  • Sweet corns are enjoyed worldwide as processed products and fresh ears. Types of sweet corn are based on the gene(s) involved. The oldest sweet corn type has a gene called "sugary (su)". Sugary-based sweet corn was typically named "sweet corn". With its relatively short shelf life and the discovery of a complementary gene, "sugary enhanced (se)", the sweet corn (su only) was rapidly replaced with another type of sweet corns, sugary enhanced sweet corn, which has recessive homozygous su/su, se/se genotype. With the incorporation of se/se genotype into existing su/su genotype, sugary enhanced sweet corn has better shelf life and increased sweetness while maintaining its creamy texture due to high level of water soluble polysaccharide, phytoglycogen. Super sweet corn as the name implies has higher level of sweetness and better shelf life than sugary enhanced sweet corn due to "shrunken2 (sh2)" gene although there's no creamy texture of su-based sweet corns. Distinction between sh2/sh2 and su/su genotypes in seeds is phenotypically possible. The Involvement of se/se genotype under su/su genotype, however, is visually impossible. The genotype sh2/sh2 is also phenotypically epistatic to su/su genotype when both genotypes are present in an individual, meaning the seed shape for double recessive sh2/sh2 su/su genotype is much the same as sh2/sh2 +/+ genotype. Hence, identifying the double and triple recessive homozygous genotypes from su, se and sh2 genes involves a testcross to single recessive genotype, chemical analysis or DNA-based marker development. For these reasons, sweetcorn breeders were hastened to put them together into one cultivar. This, however, appears to be no longer the case. Sweet corn companies began to sell their sweet corn hybrids with different combinations of abovementioned three genes under a few different trademarks or genetic codes, i.g. Sweet $Breed^{TM}$, Sweet $Gene^{TM}$, Synergistic corn, Augmented Supersweet corn. A total of 49 commercial sweet corn F1 hybrids with B73 as a check were genotyped using DNA-based markers. The genotype of field corn inbred B73 was +/+ +/+ +/+ for su, se and sh2 as expected. All twelve sugary enhanced sweet corn hybrids had the genotype of su/su se/se +/+. Of sixteen synergistic hybrids, thirteen cultivars had su/su se/se sh2/+ genotype while the genotype of two hybrids and the remaining one hybrid was su/su se/+ sh2/+, and su/su +/+ sh2/+, respectively. The synergistic hybrids all were recessive homozygous for su gene and heterozygous for sh2 gene. Among the fifteen augmented supersweet hybrids, only one hybrid was triple recessive homozygous (su/su se/se sh2/sh2). All the other hybrids had su/su se/+ sh2/sh2 for one hybrid, su/su +/+ sh2/sh2 for three hybrids, su/+ se/se sh2/sh2 for three hybrids, su/+ se/+ sh2/sh2 for four hybrids, and su/+ +/+ sh2/sh2 for three hybrids, respectively. What was believed to be a classic super sweet corn hybrids also had various genotypic combination. There were only two hybrids that turned out to be single recessive sh2 homozygous (+/+ +/+ sh2/sh2) while all the other five hybrids could be classified as one of augmented supersweet genotypes. Implication of the results for extension service and sweet corn breeding will be discussed.

  • PDF

Lipoxygenase and Off-flavor Development in Some Frozen Foods (일부냉동식품에서의 Lipoxygenase와 이취발생관계)

  • Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.53-56
    • /
    • 1981
  • Several tests were conducted to study lipoxygenase activity and off-flavor developement in frozen sweet corn. Fresh corn contained about 60% of total lipoxygenase activity in the germ section. When non-blanched frozen sweet corn was stored at $-10^{\circ}F$, it developed off-flavor and most significant changes in the flavor profile of off-flavored sweet corn was $4{\sim}5$ times higher hexanal peaks. The high hexanal peaks observed in the sterilized sweet corn with added lipoxygenase, alone and in combination with other enzymes, suggested the fact that high hexanal peaks in off-flavored sweet corn could be due to an oxidative reaction of lionleic acid (and other unsaturated fatty acids) catalyzed by lipoxygenase. Based on lipoxygenase activity and linoleic acid content in sweet corn, this reaction occur most heavily in the germ section of sweet corn. There was a significant relationship between flavor score of frozen stored corn-on-the-cob and hexanal peak in the germ section of corn-on-the-cob. This result indicated that hexanal peak could be used as an objective index of off-flavor development in frozen sweet corn.

  • PDF

Physicochemical Characteristics of Enzyme-treated Super Sweet Corn Sikhye (효소처리 초당옥수수 식혜의 이화학적 특성)

  • Byung-Ho In;Jae-Jun Lee;Da-Bin Jang;Won-Jong Lee;Ah-Rum Yoon;Sung-Kyu Kim;Kyung-Haeng Lee
    • The Korean Journal of Food And Nutrition
    • /
    • v.37 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • To produce super sweet corn sikhye, substituted for sweetener, the ratio of rice and super sweet corn was adjusted and processed with complex enzymes during saccharification, and their physicochemical and sensory properties were analyzed. The soluble solid content of the control and Corn-5 showed significantly high content at 13.50 °Brix, and the reducing sugar content of Corn-5 showed the highest content at 9.45%. The control showed the lowest free sugar content among all the experimental groups, excluding maltose content. In the enzyme-treated corn sikhye group, as the amount of super sweet corn increased, the content of sucrose decreased and the contents of glucose and fructose increased. The content of ascorbic acid and polyphenol compounds increased as the amount of super sweet corn increased. DPPH and ABTS radical scavenging abilities increased with increasing ratio of super sweet corn and enzyme treatment compared to the control. In the case of sensory evaluation, Corn-3, which substituted 30% of super sweet corn for rice and treated with enzymes, showed higher evaluations in taste, sweetness, and overall preference than those of the control.

Changes in Seed Vigour of Sweet and Super Sweet Corn Hybrids as Affected by Storage Conditions (단옥수수와 초당옥수수의 저장조건에 따른 종자 활력변화)

  • Lee Suk-Soon;Yun Sang-Hee;Yang Seung-Kyu;Hong Seung-Beom
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.432-439
    • /
    • 2006
  • An experiment was conducted to characterize the seed vigour of sweet (su) and super sweet (sh2) corn seeds stored at different temperatures and relative humidities (RH). Hybrid seeds of Early Sunglow ${\times}$ Golden Cross Bantam 70 (su) and Xtrasweet 82 ${\times}$ Fortune (sh2) were stored at different temperatures ($5\;and\;15^{\circ}C$) and RH(70 and 85%) for 10 months. Results of the experiment show that seed deterioration of super sweet corn was much faster than that of sweet corn under all storage conditions. Germination rate of sweet corn seeds at $25^{\circ}C$ and emergence rate in cold test showed similar patterns. Emergence rate of super sweet corn in cold test was significantly lower than the germination rate at $25^{\circ}C$. Germination rate of both sweet and super sweet corns was positively correlated to the emergence rate in cold test, but the correlation coefficient of super sweet corn was much lower compared to the sweet corn. This implies that the viability of super sweet corn seeds should be tested in the cold test to estimate field emergence rate. Seeds of sweet corn could be stored for 5 months under all storage conditions without significant seed deterioration, while those of super sweet corn should be stored at low temperature and RH. The emergence rate of sweet corn in cold test was not correlated to the leakage of total sugars, electrolytes or ${\alpha}-amylase$ activity, while that of super sweet com was positively correlated to the ${\alpha}-amylase$ activity, negatively correlated to the leakage of electrolytes, and was not correlated to the leakage of total sugars.

Germination Percentages of Different Types of Sweet Corn in Relation to Harvesting Dates

  • Lee, Myoung-Hoon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.1
    • /
    • pp.55-58
    • /
    • 2000
  • Germination of sweet and super sweet corn is lower than normal corn due to the higher sugar and lower starch contents of kernels. Sweet corn seeds are easily deteriorated in the field under the unfavorable condition, therefore it is important to identify the optimal harvesting time for seed production. This trial was conducted to investigate the responses of germination percentage of shrunken-2(sh2), brittle(bt), sugary(su), and sugary enhancer(se) hybrids in relation to harvesting dates. Eight hybrids of four different gene sweet corns were harvested at 15, 20, 25, 30, 35, 40, 45, and 50 days after silking(DAS). Germination test was performed using paper towel method. Mean germination percentages across eight hybrids showed the highest value at 45 DAS. There were significant differences among genes and within gene for germination. Shrunken-2 hybrid Mecca was higher than su hybrids for germination, indicating that sh2 would not be poorer than su Late harvesting beyond the optimal harvesting date might not be desirable because of more lodging and ear rots. Theoretical optimal harvesting date estimated from the regression equation was 40.9 DAS, however, practical date for harvesting would be a few days later than the estimated date if seedling vigor might be considered. Kernel dry weight per ear showed similar response to germination. Regression equation showed the highest kernel dry weight at 40.7 DAS. Significant correlations between kernel dry weight and germination were observed, impling that kernel dry matter accumulation would be an important factor for germination.

  • PDF

Assessing Carotenoid Levels and Antioxidant Properties in Korean Sweet Corn Inbred Lines to Develop High-Quality Sweet Corn Varieties through Breeding (기능성 단옥수수 품종 육성을 위한 자식계통의 카로티노이드 함량 및 항산화 활성 평가)

  • Jun Young Ha;Seong-Hyu Shin;Young Sam Go;Hwan Hee Bae;Sang Gon Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.2
    • /
    • pp.59-68
    • /
    • 2023
  • Sweet corn is widely consumed due to its high nutritional content and diverse phytochemical composition, including carotenoids and phenolic compounds, which have several benefits for human health. This study aims to identify breeding materials for developing high-functional sweet corn varieties by evaluating the phytochemical and antioxidant activities of 37 Korean sweet corn inbred lines. The results revealed genetic variation in various components, such as carotenoid content (range of 120.7~1239.3 mg 100 g-1), polyphenol content (490.5~740.6 mg gallic acid equivalent 100 g-1), and flavonoid content (7.3~68.6 mg catechin equivalent 100 g-1). In addition, the free radical scavenging capacity, measured using 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid), also varied among the inbred lines. Therefore, in this study, we identified Korean sweet corn inbred lines with high phytochemical content and excellent antioxidant activity. The development of sweet corn varieties with improved functionality is expected to further expand the role of sweet corn as a source of antioxidants in the Korean diet.

Quality Evaluation of Tangmyon Prepared from Sweet Potato and/or Corn Starches (원료 전분이 다른 당면의 품질 평가)

  • Ko, Chang-Heon;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.160-164
    • /
    • 1992
  • Cooking, texture and sensory properties of sweet potato Tangmyon (starch noodle), common Tangmyon (50% sweet potato starch+50% corn starch) and corn Tangmyon were evaluated. The weight gain of Tangmyon showed a linear relationship with the square root of cooking time, in which the common Tangmyon showed the highest value. The solid loss during cooking was the highest in common Tangmyon followed by corn Tangmyon. The sweet potato Tangmyon showed the highest value for compression strength and stretching ratio, but lowest value for elongation elastic modulus. At the same compression strength, corn Tangmyon had the highest tensile strength and sweet potato Tangmyon the lowest value. Sweet potato Tangmyon showed the highest sensory scores of gloss, clarity, adhesiveness, gumminess, extensibility and overall desirability, and corn Tangmyon the lowest scores. Except adhesiveness (by appearance) and the gumminess of common and corn Tangmyon, significant differences (p<0.05) were observed for other sensory properties among samples.

  • PDF