• Title/Summary/Keyword: sway suppression

Search Result 15, Processing Time 0.021 seconds

Boundary Control of Container Crane;Two-Stage Control of a Container Crane as Nonflexible and Flexible Cable

  • Park, Hahn;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.153-158
    • /
    • 2004
  • In this paper, we proposed a two-stage control of the container crane. The first stage control is time-optimal control for the purpose of fast trolley traveling. With suitable trolley velocity patterns, the sway which is generated during trolley moving is minimized. At the second stage control feedback control law is investigated for the quick suppression of residual vibration after the trolley motion. For more practical system, the container crane system is modeled as a partial differential equation (PDE) system with flexible cable. The dynamics of the cable is derived as a moving system with tension caused by payload using Hamilton's principle for the systems. A control law based upon the Lyapunov's method is derived. It is revealed that a time-varying control force and a suitable passive damping at the actuator can successfully suppress the transverse vibrations.

  • PDF

Boundary Control of Container Cranes as an Axially Moving String System (축방향으로 이동하는 현의 경계제어)

  • Park, Hahn;Hong, Keum-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.387-392
    • /
    • 2004
  • The control objectives in this paper are to move the gantry of a container crane to its target position and to suppress the transverse vibration of the payload. The crane system is modeled as an axially moving string equation, in which control inputs are applied at both ends, through the gantry and the payload. The dynamics of the moving string are derived using Hamilton's principle for systems with changing mass. The Lyapunov function method is used in deriving a boundary control law, in which the Lyapunov function candidate is introduced from the total mechanical energy of the system. The performance of the proposed control law is compared with other two control algorithms available in the literature. Experimental results are given.

  • PDF

Sliding-Mode Control of Container Cranes (컨테이너크레인 시스템의 슬라이딩모드제어)

  • Lee Suk-Jae;Park Hahn;Hong Keum-Shik
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.747-753
    • /
    • 2005
  • In this paper, as an anti-sway control strategy of container cranes, we investigate a variable structure control in which the moving load follows a given trajectory, whereas both the trolley and hoist controllers achieve their positioning problems. It is crucial, in an automated container terminal, that collisions should be avoided during the transference of containers from one place to another. It is also necessary, in the case of a quay crane, to select suitable loading and unloading trajectories of containers, so that possible collisions with surrounding obstacles are avoided. After a brief introduction of the mathematical model, a robust control scheme (i.e., a second-order sliding mode control that guarantees a fast and precise transference and a suppression of the resulted swing) is presented. Despite model uncertainties and unmodeled actuators dynamics, the swing suppression from the given trajectory is obtained by constraining the system motion on suitable sliding surfaces, which include both the desired path and the swing angle. The proposed controller has been tested with a laboratory-size pilot crane. Experimental results are provided.

Dynamics Analysis and Residual Vibration Control of an Overhead Shuttle System (오버헤드셔틀시스템의 동특성해석 및 잔류진동제어)

  • Piao, Mingxu;Kim, Gyoung-Hahn;Shah, Umer Hameed;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.445-452
    • /
    • 2016
  • This paper discusses the dynamics and control problem of an overhead shuttle system (OSS), which is a critical part of the automated container terminal at a port. The main purpose of the OSS is efficient automated transport function of containers, which also requires high precision and safety. A major difference between the OSS and the conventional container crane is the configuration of the cables for hoisting the spreader. A mathematical model of the OSS is developed here for the first time, which results in an eight-pole system. Also, open loop control methods (trapezoidal and notch-type velocity profiles) are investigated so that the command input to the overhead shuttle produces the minimum possible sway of the payload. Simulation results show that the vibration suppression capability of the OSS is superior to the conventional overhead container crane, which is partially due to the cable configuration.

Sloshing suppression by floating baffle

  • Kang, Hooi-Siang;Md Arif, Ummul Ghafir;Kim, Kyung-Sung;Kim, Moo-Hyun;Liu, Yu-Jie;Lee, Kee-Quen;Wu, Yun-Ta
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.409-422
    • /
    • 2019
  • Sloshing is a phenomenon which may lead to dynamic stability and damages on the local structure of the tank. Hence, several anti-sloshing devices are introduced in order to reduce the impact pressure and free surface elevation of liquid. A fixed baffle is the most prevailing anti-sloshing mechanism compared to the other methods. However, the additional of the baffle as the internal structure of the LNG tank can lead to frequent damages in long-term usage as this structure absorbs the sloshing loads and thus increases the maintenance cost and downtime. In this paper, a novel type of floating baffle is proposed to suppress the sloshing effect in LNG tank without the need for reconstructing the tank. The sloshing phenomenon in a membrane type LNG tank model was excited under sway motion with 30% and 50% filling condition in the model test. A regular motion by a linear actuator was applied to the tank model at different amplitudes and constant period at 1.1 seconds. Three pressure sensors were installed on the tank wall to measure the impact pressure, and a high-speed camera was utilized to record the sloshing motion. The floater baffle was modeled on the basis of uniform-discretization of domain and tested based on parametric variations. Data of pressure sensors were collected for cases without- and with-floating baffle. The results indicated successful reduction of surface run-up and impulsive pressure by using a floating baffle. The findings are expected to bring significant impacts towards safer sea transportation of LNG.