• Title/Summary/Keyword: swarm system

Search Result 377, Processing Time 0.023 seconds

Voltage Stability Prediction on Power System Network via Enhanced Hybrid Particle Swarm Artificial Neural Network

  • Lim, Zi-Jie;Mustafa, Mohd Wazir;Jamian, Jasrul Jamani
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.877-887
    • /
    • 2015
  • Rapid development of cities with constant increasing load and deregulation in electricity market had forced the transmission lines to operate near their threshold capacity and can easily lead to voltage instability and caused system breakdown. To prevent such catastrophe from happening, accurate readings of voltage stability condition is required so that preventive equipment and operators can execute security procedures to restore system condition to normal. This paper introduced Enhanced Hybrid Particle Swarm Optimization algorithm to estimate the voltage stability condition which utilized Fast Voltage Stability Index (FVSI) to indicate how far or close is the power system network to the collapse point when the reactive load in the system increases because reactive load gives the highest impact to the stability of the system as it varies. Particle Swarm Optimization (PSO) had been combined with the ANN to form the Enhanced Hybrid PSO-ANN (EHPSO-ANN) algorithm that worked accurately as a prediction algorithm. The proposed algorithm reduced serious local minima convergence of ANN but also maintaining the fast convergence speed of PSO. The results show that the hybrid algorithm has greater prediction accuracy than those comparing algorithms. High generalization ability was found in the proposed algorithm.

Dynamic behavior control of a collective autonomous mobile robots using artificial immune networks (인공면역네트워크에 의한 자율이동로봇군의 동적 행동 제어)

  • 이동욱;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.124-127
    • /
    • 1997
  • In this paper, we propose a method of cooperative control based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B lymphocyte(B cell), each environmental condition as an antigen, and a behavior strategy as an antibody respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is simulated and suppressed by other robot using communication. Finally much simulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy.

  • PDF

Self-Organization of Swarm Robots Based on Color Recognition (컬러 인식에 기반을 둔 스웜 로봇의 자기 조직화 연구)

  • Jung, Hah-Min;Hwang, Young-Gi;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.413-421
    • /
    • 2010
  • In the study, self-organization by color detection is proposed to overcome required constraints for existing self-organization by an external ceiling camera and communication. In the proposed self-organization, each swarm robot can follow its colleague robot and all swarm robots can follow a target by LOS(Line of Sight). The swarm robots follow the moving target by the proposed potential field, avoiding confliction with neighboring robots and obstacles. Finally, all swarm robots are reached by a sight among swarm robots. In this paper, for unicycle robots with non-holonomic constraints instead of point robot with holonomic constraints self-organization is presented, it enhances the possibility of H/W realization.

An improved particle swarm optimizer for steel grillage systems

  • Erdal, Ferhat;Dogan, Erkan;Saka, Mehmet Polat
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.513-530
    • /
    • 2013
  • In this paper, an improved version of particle swarm optimization based optimum design algorithm (IPSO) is presented for the steel grillage systems. The optimum design problem is formulated considering the provisions of American Institute of Steel Construction concerning Load and Resistance Factor Design. The optimum design algorithm selects the appropriate W-sections for the beams of the grillage system such that the design constraints are satisfied and the grillage weight is the minimum. When an improved version of the technique is extended to be implemented, the related results and convergence performance prove to be better than the simple particle swarm optimization algorithm and some other metaheuristic optimization techniques. The efficiency of different inertia weight parameters of the proposed algorithm is also numerically investigated considering a number of numerical grillage system examples.

Design of Solving Similarity Recognition for Cloth Products Based on Fuzzy Logic and Particle Swarm Optimization Algorithm

  • Chang, Bae-Muu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4987-5005
    • /
    • 2017
  • This paper introduces a new method to solve Similarity Recognition for Cloth Products, which is based on Fuzzy logic and Particle swarm optimization algorithm. For convenience, it is called the SRCPFP method hereafter. In this paper, the SRCPFP method combines Fuzzy Logic (FL) and Particle Swarm Optimization (PSO) algorithm to solve similarity recognition for cloth products. First, it establishes three features, length, thickness, and temperature resistance, respectively, for each cloth product. Subsequently, these three features are engaged to construct a Fuzzy Inference System (FIS) which can find out the similarity between a query cloth and each sampling cloth in the cloth database D. At the same time, the FIS integrated with the PSO algorithm can effectively search for near optimal parameters of membership functions in eight fuzzy rules of the FIS for the above similarities. Finally, experimental results represent that the SRCPFP method can realize a satisfying recognition performance and outperform other well-known methods for similarity recognition under considerations here.

Path Control Method of Networked Swarm Robot Systems using Spring Damper Impedance Features (스프링 댐퍼 임피던스 특성을 이용한 네트워크 기반의 군집 로봇의 경로 제어 기법)

  • Kim, Sung-Wook;Kim, Dong-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.61-68
    • /
    • 2010
  • This paper proposes networked swarm robotic systems with group based control scheme using spring damper impendence feature. The proposed algorithm is applied to keep system arrangement in unexpected situations based on the spring-damper impedance and fuzzy logic. Using the proposed scheme, each robot overcome collision problems efficiently. The structure of UBSR (UMPC Based Swarm Robot) system consists of user level, cognitive level, and executive level. This structure is designed to easily meet the different configuration requirements for other levels. Simulation results show an availability of the proposed method.

Group Behavior and Cooperative Strategies of Swarm Robot Based on Local Communication and Artificial Immune System (지역적 통신과 인공면역계에 기반한 군집 로봇의 협조 전략과 군 행동)

  • Sim, Kwee-Bo;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.72-78
    • /
    • 2006
  • It is essential for robot to have the sensing and communication abilities in the swarm robot system. In general, as the number of robot goes on increasing, the limitation of communication capacity and information overflow occur in global communication system. Therefore a local communication is more effective than global one. In this paper, we propose the novel method for determining the optimal communication radius through the analyzing of the information propagation based on local communication. And we also propose a method of cooperative strategies and group behavior of swarm robot based on artificial immune system.

An Immune System Modeling for Realization of Cooperative Strategies and Group Behavior in Collective Autonomous Mobile Robots (자율이동로봇군의 협조전략과 군행동의 실현을 위한 면역시스템의 모델링)

  • 이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.127-130
    • /
    • 1998
  • In this paper, we propose a method of cooperative control(T-cell modeling) and selection of group behavior strategy(B-cell modeling) based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-call respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based of clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF

Design of Optimized Fuzzy Cascade controller Based on Partical Swarm Optimization for Ball & Beam System (볼빔 시스템에 대한 입자 군집 최적화를 이용한 최적 퍼지 직렬형 제어기 설계)

  • Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2322-2329
    • /
    • 2008
  • In this study, we introduce the design methodology of an optimized fuzzy cascade controller with the aid of particle swarm optimization(PSO) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. We introduce the fuzzy cascade controller scheme which consists of the outer(1st) controller and the inner(2nd) controller as two cascaded fuzzy controllers, and auto-tune the control parameters(scaling facrors) of each fuzzy controller using PSO. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on PSO, is presented in comparison with the conventional PD cascade controller based on serial genetic alogritms.

Performance Comparison of Discrete Particle Swarm Optimizations in Sequencing Problems (순서화 문제에서 01산적 Particle Swarm Optimization들의 성능 비교)

  • Yim, D.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.58-68
    • /
    • 2010
  • Particle Swarm Optimization (PSO) which has been well known to solve continuous problems can be applied to discrete combinatorial problems. Several DPSO (Discrete Particle Swarm Optimization) algorithms have been proposed to solve discrete problems such as traveling salesman, vehicle routing, and flow shop scheduling problems. They are different in representation of position and velocity vectors, operation mechanisms for updating vectors. In this paper, the performance of 5 DPSOs is analyzed by applying to traditional Traveling Salesman Problems. The experiment shows that DPSOs are comparable or superior to a genetic algorithm (GA). Also, hybrid PSO combined with local optimization (i.e., 2-OPT) provides much improved solutions. Since DPSO requires more computation time compared with GA, however, the performance of hybrid DPSO is not better than hybrid GA.