• Title/Summary/Keyword: swarm robotics

Search Result 54, Processing Time 0.025 seconds

Self-organization of Swarm Systems by Association

  • Kim, Dong-Hun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.253-262
    • /
    • 2008
  • This paper presents a framework for decentralized control of self-organizing swarm systems based on the artificial potential functions (APFs). The framework explores the benefits by associating agents based on position information to realize complex swarming behaviors. A key development is the introduction of a set of association rules by APFs that effectively deal with a host of swarming issues such as flexible and agile formation. In this scheme, multiple agents in a swarm self-organize to flock and achieve formation control through attractive and repulsive forces among themselves using APFs. In particular, this paper presents an association rule for swarming that requires less movement for each agent and compact formation among agents. Extensive simulations are presented to illustrate the viability of the proposed framework.

Area Search of Multiple UAV's based on Evolutionary Robotics (진화로봇공학 기반의 복수 무인기를 이용한 영역 탐색)

  • Oh, Soo-Hun;Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.352-362
    • /
    • 2010
  • The simultaneous operation of multiple UAV's makes it possible to enhance the mission accomplishment efficiency. In order to achieve this, easily scalable control algorithms are required, and swarm intelligence having such characteristics as flexibility, robustness, decentralized control, and self-organization based on behavioral model comes into the spotlight as a practical substitute. Recently, evolutionary robotics is applied to the control of UAV's to overcome the weakness of difficulties in the logical design of behavioral rules. In this paper, a neural network controller evolved by evolutionary robotics is applied to the control of multiple UAV's which have the mission of searching limited area. Several numerical demonstrations show the proposed algorithm has superior results to those of behavior based neural network controller which is designed by intuition.

Development of a Port Worker Safety Monitoring System Using Swarm Drones and Deep Learning Technology (군집 드론과 딥러닝 기술을 활용한 항만 작업자 안전 모니터링 시스템 개발)

  • Tae-Hyeon Joe;Gwang-Ho Park;Gi-Beom Park;Jun-Yeong Jang;Si-Wu Kim;Sung-Tae Moon
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.1008-1009
    • /
    • 2024
  • 항만은 대규모 화물 처리와 물류 이동의 중심지로, 복잡한 작업 절차와 다수의 인력 및 장비가 투입되기 때문에 높은 수준의 안전 관리가 필요하다. 기존 항만 안전 시스템은 보안 인력과 고정형 CCTV 를 통해 감시가 이루어지나, 고정된 시야와 높은 인력 비용으로 인한 한계가 존재한다. 본 연구는 군집 드론을 활용하여 작업자의 안전 준수 여부를 실시간으로 식별·감지하는 시스템을 개발하고, 항만과 유사한 환경을 시뮬레이션을 구축하여 교차 검증 및 적용 가능성을 평가한다. 이를 통해 항만 안전 관리의 효율성을 극대화하고 작업자의 안전을 강화하는 새로운 방안을 제시한다.

Conceptual Design of Oil Spill Protection Robot (원유유출 방재로봇의 컨셉디자인)

  • Kim, Ji-Hoon;Kim, Myung-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.345-350
    • /
    • 2008
  • This study aims to propose the concept design of oil spill protection robot which can rapidly intervene to control the oil spillage situation at the sea. Taking into account the fact that a huge amount of oil is transported trans-continentally by oil tanker, none of industrialized countries are completely safe from the marine oil spill which results in social, economical and ecological damages to their communities. The employment of double hull-oil tanker, pipe line transporting can be most safe way. Yet complete prevention of oil spill is probably not realistic. Accordingly the alternative solution to control marine oil spill and minimize the damages caused by the incident using intelligent robot technology based on swarm control method is proposed. The main features of oil spill protection(OSP) robot is explained via following three perspectives. Firstly, from functional point of view, OSP robot system safely and efficiently replaces oil boom installation manually conducted by human workers with intelligent robot technology based on swarm control theory. For second, its modular architecture brings efficient storage of main components including oil boom and facilitates maintenance. For the last, its geometric form and shape enables whole system to be installed to helicopter, boat or oil tanker itself with ease and to rapidly deploy the units to the oil spill area.

  • PDF

Distributed Search of Swarm Robots Using Tree Structure in Unknown Environment (미지의 환경에서 트리구조를 이용한 군집로봇의 분산 탐색)

  • Lee, Gi Su;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.285-292
    • /
    • 2018
  • In this paper, we propose a distributed search of a cluster robot using tree structure in an unknown environment. In the proposed method, the cluster robot divides the unknown environment into 4 regions by using the LRF (Laser Range Finder) sensor information and divides the maximum detection distance into 4 regions, and detects feature points of the obstacle. Also, we define the detected feature points as Voronoi Generators of the Voronoi Diagram and apply the Voronoi diagram. The Voronoi Space, the Voronoi Partition, and the Voronoi Vertex, components of Voronoi, are created. The generated Voronoi partition is the path of the robot. Voronoi vertices are defined as each node and consist of the proposed tree structure. The root of the tree is the starting point, and the node with the least significant bit and no children is the target point. Finally, we demonstrate the superiority of the proposed method through several simulations.

On the Comparison of Particle Swarm Optimization Algorithm Performance using Beta Probability Distribution (베타 확률분포를 이용한 입자 떼 최적화 알고리즘의 성능 비교)

  • Lee, ByungSeok;Lee, Joon Hwa;Heo, Moon-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.854-867
    • /
    • 2014
  • This paper deals with the performance comparison of a PSO algorithm inspired in the process of simulating the behavior pattern of the organisms. The PSO algorithm finds the optimal solution (fitness value) of the objective function based on a stochastic process. Generally, the stochastic process, a random function, is used with the expression related to the velocity included in the PSO algorithm. In this case, the random function of the normal distribution (Gaussian) or uniform distribution are mainly used as the random function in a PSO algorithm. However, in this paper, because the probability distribution which is various with 2 shape parameters can be expressed, the performance comparison of a PSO algorithm using the beta probability distribution function, that is a random function which has a high degree of freedom, is introduced. For performance comparison, 3 functions (Rastrigin, Rosenbrock, Schwefel) were selected among the benchmark Set. And the convergence property was compared and analyzed using PSO-FIW to find the optimal solution.

Optimal Joint Trajectory Generation for Biped Walking of Humanoid Robot based on Reference ZMP Trajectory (목표 ZMP 궤적 기반 휴머노이드 로봇 이족보행의 최적 관절궤적 생성)

  • Choi, Nak-Yoon;Choi, Young-Lim;Kim, Jong-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.92-103
    • /
    • 2013
  • Humanoid robot is the most intimate robot platform suitable for human interaction and services. Biped walking is its basic locomotion method, which is performed with combination of joint actuator's rotations in the lower extremity. The present work employs humanoid robot simulator and numerical optimization method to generate optimal joint trajectories for biped walking. The simulator is developed with Matlab based on the robot structure constructed with the Denavit-Hartenberg (DH) convention. Particle swarm optimization method minimizes the cost function for biped walking associated with performance index such as altitude trajectory of clearance foot and stability index concerning zero moment point (ZMP) trajectory. In this paper, instead of checking whether ZMP's position is inside the stable region or not, reference ZMP trajectory is approximately configured with feature points by which piece-wise linear trajectory can be drawn, and difference of reference ZMP and actual one at each sampling time is added to the cost function. The optimized joint trajectories realize three phases of stable gait including initial, periodic, and final steps. For validation of the proposed approach, a small-sized humanoid robot named DARwIn-OP is commanded to walk with the optimized joint trajectories, and the walking result is successful.

Collective Navigation Through a Narrow Gap for a Swarm of UAVs Using Curriculum-Based Deep Reinforcement Learning (커리큘럼 기반 심층 강화학습을 이용한 좁은 틈을 통과하는 무인기 군집 내비게이션)

  • Myong-Yol Choi;Woojae Shin;Minwoo Kim;Hwi-Sung Park;Youngbin You;Min Lee;Hyondong Oh
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.117-129
    • /
    • 2024
  • This paper introduces collective navigation through a narrow gap using a curriculum-based deep reinforcement learning algorithm for a swarm of unmanned aerial vehicles (UAVs). Collective navigation in complex environments is essential for various applications such as search and rescue, environment monitoring and military tasks operations. Conventional methods, which are easily interpretable from an engineering perspective, divide the navigation tasks into mapping, planning, and control; however, they struggle with increased latency and unmodeled environmental factors. Recently, learning-based methods have addressed these problems by employing the end-to-end framework with neural networks. Nonetheless, most existing learning-based approaches face challenges in complex scenarios particularly for navigating through a narrow gap or when a leader or informed UAV is unavailable. Our approach uses the information of a certain number of nearest neighboring UAVs and incorporates a task-specific curriculum to reduce learning time and train a robust model. The effectiveness of the proposed algorithm is verified through an ablation study and quantitative metrics. Simulation results demonstrate that our approach outperforms existing methods.

Simple Pyramid RAM-Based Neural Network Architecture for Localization of Swarm Robots

  • Nurmaini, Siti;Zarkasi, Ahmad
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.370-388
    • /
    • 2015
  • The localization of multi-agents, such as people, animals, or robots, is a requirement to accomplish several tasks. Especially in the case of multi-robotic applications, localization is the process for determining the positions of robots and targets in an unknown environment. Many sensors like GPS, lasers, and cameras are utilized in the localization process. However, these sensors produce a large amount of computational resources to process complex algorithms, because the process requires environmental mapping. Currently, combination multi-robots or swarm robots and sensor networks, as mobile sensor nodes have been widely available in indoor and outdoor environments. They allow for a type of efficient global localization that demands a relatively low amount of computational resources and for the independence of specific environmental features. However, the inherent instability in the wireless signal does not allow for it to be directly used for very accurate position estimations and making difficulty associated with conducting the localization processes of swarm robotics system. Furthermore, these swarm systems are usually highly decentralized, which makes it hard to synthesize and access global maps, it can be decrease its flexibility. In this paper, a simple pyramid RAM-based Neural Network architecture is proposed to improve the localization process of mobile sensor nodes in indoor environments. Our approach uses the capabilities of learning and generalization to reduce the effect of incorrect information and increases the accuracy of the agent's position. The results show that by using simple pyramid RAM-base Neural Network approach, produces low computational resources, a fast response for processing every changing in environmental situation and mobile sensor nodes have the ability to finish several tasks especially in localization processes in real time.

Training of Fuzzy-Neural Network for Voice-Controlled Robot Systems by a Particle Swarm Optimization

  • Watanabe, Keigo;Chatterjee, Amitava;Pulasinghe, Koliya;Jin, Sang-Ho;Izumi, Kiyotaka;Kiguchi, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1115-1120
    • /
    • 2003
  • The present paper shows the possible development of particle swarm optimization (PSO) based fuzzy-neural networks (FNN) which can be employed as an important building block in real life robot systems, controlled by voice-based commands. The PSO is employed to train the FNNs which can accurately output the crisp control signals for the robot systems, based on fuzzy linguistic spoken language commands, issued by an user. The FNN is also trained to capture the user spoken directive in the context of the present performance of the robot system. Hidden Markov Model (HMM) based automatic speech recognizers are developed, as part of the entire system, so that the system can identify important user directives from the running utterances. The system is successfully employed in a real life situation for motion control of a redundant manipulator.

  • PDF